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Abstract

Aim: Nerve dysfunction often manifests as abnormal eye behaviors, necessitating accurate and objective
neurological assessment. Current deep learning-based facial analysis methods lack adaptability to inter-patient
variability, making it difficult to capture subtle and rapid ocular dynamics such as incomplete eyelid closure or
asymmetric eye movement. To address this, we propose a precise deep learning system for quantitative ocular
state analysis, providing objective support for the evaluation of neurological dysfunction.

Methods: We propose the Ocular-enhanced Face Keypoints Net (OFKNet). It incorporates three key innovations:
(1) a 40-point anatomically informed ocular landmark design enabling dense modeling of eyelid contours, canthus
structure, and pupil dynamics; (2) a MobileNetV3-based region enhancement module that amplifies feature
responses within clinically critical areas such as the internal canthus; (3) and an improved Path Aggregation
Network combined with Squeeze-and-Excitation modules that enables adaptive multi-scale fusion and enhances
sensitivity to subtle ocular deformations.

Results: Using clinically acquired data, OFKNet demonstrates substantial performance gains over state-of-the-art
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baselines. It achieves a 65.3% reduction in normalized mean error on the 40-point dataset (0.029 vs. 0.084) and a
38.4% reduction on the 14-point dataset, with all improvements statistically significant (P < 0.001). Despite
operating on high-resolution inputs, the system maintains real-time capability and provides stable frame-level
landmark localization, enabling precise capture of dynamic ocular motion patterns.

Conclusion: OFKNet provides a reliable tool for real-time monitoring of eye movement patterns in patients with
neurological disorders. By visualizing time-series graphs of bilateral eye openness, the system enables a more
comprehensive understanding of ocular dynamics and supports timely clinical decision-making and treatment
adjustment.

Keywords: Computer vision, nerve dysfunction, facial paralysis, convolutional neural networks, and eye movement
tracking

INTRODUCTION

Nerve dysfunction comprises a group of disorders resulting from nerve damage, often leading to
impairments in movement, sensation, or emotional regulation. Common neurological conditions involve
difficulties in eyelid closure, which may cause serious complications, including vision impairment or even
blindness due to exposure keratopathy. Analyzing eye movements provides crucial insights into these
dysfunctions. However, diagnoses remain largely dependent on physicians’ subjective evaluations, lacking
standardized and objective assessment tools™?. In facial paralysis, grading scales such as the House-
Brackmann Grading System (H-BGS) and the Sunnybrook Facial Grading System (SF) are widely used™".
However, they fail to capture the full complexity of facial nerve dysfunction and are still influenced by
clinical experience. To address these limitations, Niu et al. propose a facial paralysis detection model based
on facial action units and co-occurrence matrices'”, while Zhang ef al. and Gao et al. develop deep learning-
based systems to improve objectivity in static and dynamic evaluations'®”. Despite these advancements,
current approaches require complex equipment, struggle to capture fast muscle movements, and remain
sensitive to noise and individual variability, limiting their broader clinical application'. In recent years,
deep learning has shown strong potential in medical image analysis. The Pseudo RGB-D (red, green, and
blue-depth) Face Recognition framework" integrates depth-aware cues into facial feature extraction to
improve discriminative representation, while the Simulated Multimodal Deep Facial Diagnosis model™
demonstrates the feasibility of combining multiple imaging modalities for robust medical interpretation.
These studies highlight the promise of deep learning in clinical diagnosis but also expose key limitations
when applied to ocular analysis™.

The assessment of ocular status plays a vital role in evaluating nerve dysfunction®". Clinically, patients
frequently exhibit incomplete eyelid closure or asymmetric eyelid movement. These ocular signs offer
important insights into the severity of nerve dysfunction and inform treatment planning. To enhance eye
movement analysis, data visualization proves essential by converting complex ocular dynamics into
interpretable formats, enabling physicians to detect trends and monitor disease progression*'?. For
instance, line graphs showing the degree of eye opening in both eyes help identify asymmetry, while
keyframes support detailed evaluation of eyelid motion patterns. Visualizing ocular data improves
diagnostic accuracy and facilitates communication, giving patients a clearer understanding of their
condition and promoting active involvement in treatment.

This work proposes the Ocular-enhanced Face Keypoints Net (OFKNet), a high-precision deep learning
model explicitly designed for ocular state monitoring in patients with neurological dysfunction [Figure 1].
OFKNet enhances fine-grained landmark localization and quantifies dynamic eye movements through real-
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Figure 1. Motivation for this work.

time processing. It introduces three core innovations tailored to the challenges above: (1) a 40-point
anatomically informed ocular landmark design that markedly increases spatial resolution around the eyelid
and canthus; (2) a region enhancement module that strengthens feature representation in clinically critical
periocular areas; and (3) a network that enables adaptive multi-scale fusion for robust tracking of subtle and
fast ocular motion. Specifically, ConvNeXt is adopted as the backbone to preserve detailed spatial structure,
a multi-scale input enhancement strategy improves adaptability across different facial resolutions"”, and a
lightweight MobileNetV3-based region enhancement module refines feature extraction around the
canthus"’. An improved Path Aggregation Network (PAN) combined with Squeeze-and-Excitation (SE)
modules ensures efficient multi-scale fusion and adaptive channel weighting, leading to accurate and stable
keypoint detection under diverse clinical conditions.

The remainder of this paper is organized as follows. METHODS describes the overall architecture of
OFKNet and its constituent modules. RESULTS presents the experimental setup, datasets, evaluation
metrics, and reports the quantitative and visual comparison results. DISCUSSION discusses the clinical
implications and potential extensions of the proposed framework, followed by conclusions in the end.

METHODS

We employ a high-speed, high-resolution camera to capture five facial movements of patients - neutral face
(NeutralFace), eyebrow raising (EyebrowRaise), nose scrunching (ShrugNose), smiling (Smile), and cheek
puffing (BlowCheek) - at 120 frames per second with 4K resolution. OFKNet is proposed to detect 40
specific key points in the ocular region based on the collected images. Specifically, the internal canthus of
each eye is represented by a single key point, precisely defining its position. The right and left eye contours
are represented by multiple key points distributed according to the eyes’ morphological characteristics,
outlining their boundaries. Additionally, the centers of the right and left pupils are included as critical
single-point markers. Using these 40 ocular key points, OFKNet can capture dynamic changes during eye
movements across several facial expressions. The overall framework of OFKNet is shown in Figure 2, which
mainly comprises four modules.
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Figure 2. Framework of OFKNet. OFKNet: Ocular-enhanced Face Keypoints Net.

1. Image preprocessing module: It employs ConvNeXt™ as the backbone network, removing fully connected
and pooling layers to preserve the spatial structure. A multi-scale input strategy is introduced, adopting
three resolutions (256 x 256, 112 x 112, and 56 x 56) of images to enhance the model’s adaptability.
MobileNetV3" is adopted for facial area segmentation, and a region-enhancement strategy is proposed to
adjust the weights of each region.

2. Feature extraction module: It is based on ConvNeXt and extracts features at different levels from the
preprocessed images. The bottleneck enhances feature representation while reducing the computational
cost, and the down-sampling operation generates multi-scale feature maps.

3. Feature enhancement and fusion module: It receives these multi-scale feature maps and designs an
improved PAN to fuse low-level and high-level features through top-down and bottom-up paths. SE further
enhances the feature representation ability by weighting the channels and generating a new feature map.

4. Key point detection module: It conducts key point detection in a parallel manner using the heatmap and
regression branches. The heatmap branch generates two-dimensional (2D) Gaussian heatmaps to represent
the key point probabilities, and the regression branch obtains the key point coordinates. The total loss
function combines the heatmap and regression losses to optimize the model and achieve accurate key point
detection.

Image preprocessing module

During the image preprocessing stage, three different resolutions are generated for the input image, with
one resolution randomly selected during training. Furthermore, MobileNetV3, a lightweight object
detection model, is utilized to segment the input image and identify the facial region. Standard data
augmentation techniques, including random cropping, scaling, horizontal flipping, small-angle rotations
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(+ 10°), and color jittering, are then applied to the detected facial region. To further refine the preprocessing
stage, a region enhancement module based on an attention mechanism is designed to dynamically adjust
the weights assigned to different regions in the image, thereby improving the model’s focus on crucial areas.

The accuracy of canthus detection is crucial for the diagnosis, treatment, and prognostic assessment of facial
nerve movement disorders. Therefore, an optimization procedure is designed for ocular regions to enhance
ocular feature representation in OFKNet'”. Specifically, the periocular region is finely divided into six
functional subregions through a region-attention module: the upper eyelid, lower eyelid, internal canthus,
lateral canthus, central fissure, and peri-pupil region. Dynamic weighting of these subregions is
implemented based on the five facial movements. Specifically, during neutral expression and cheek puffing,
the overall periorbital changes are minimal, resulting in relatively balanced weights across subregions.
Eyebrow-raising elicits the highest weight in the upper eyelid region, while smiling significantly increases
the weights of the lower eyelid and lateral canthus regions. Nose scrunching primarily involves elevated
weights in the central fissure and lateral canthus areas, and cheek puffing emphasizes the lower eyelid and
lateral canthus. Notably, the internal canthus region consistently maintains the highest or relatively high
weighting across all five movements. This series of operations helps establish the internal canthus region as
a critical area, and targeted cropping is applied to ensure that the extracted image preserves essential
features surrounding the canthus. Subsequent adjustments are made based on the precise canthus location,
focusing on capturing deformed features in this region. During color adjustment, contrast and color
saturation in the canthus region are selectively enhanced to improve the distinguishability of its color
distribution. Additionally, an image blur operation is applied while maintaining relative clarity in the
canthus region. For other key regions beyond the canthus, conventional enhancement techniques, including
cropping, flipping, and color adjustment, are employed, albeit with slightly lower intensity compared to the
canthus region. In contrast, only mild enhancement operations are applied to background areas to ensure
that feature optimization remains concentrated on the internal canthus region.

Feature extraction module

After preprocessing, the input image is denoted as x,, which undergoes multiple convolutional operations to
extract features at different levels. ConvNeXt is a convolution-based architecture that integrates a
hierarchical modular design and efficient computational strategies, enabling superior feature extraction'. It
has demonstrated outstanding performance in image classification and object detection tasks*. However,
fully connected layers flatten the feature map into a vector, disrupting the spatial structure information.
Since spatial structure is essential for accurately localizing key points in the facial region, fully connected
layers are removed to preserve the original spatial layout of the feature map. Additionally, pooling layers are
eliminated because they reduce the resolution of the feature map and lead to the loss of fine-grained details
from the original image. In ConvNeXt"*, the convolution operation of each layer can be expressed by a
general convolution operation. For the convolution layer /, its input and output are denoted as F,, and F,
respectively. The kernel size is k x k, the stride of the convolution kernel is s, the padding at the edges of the
input feature map is p, and the number of output channels is denoted as C,. Then, the output of convolution
layer [ is

Fiij,¢) = ReLU (Sh7h BAZE S50 wiGm.nd,e) - Fia (e s = p,j +n-s = p,d) ()

where w, (m, n, d, c) is the weight of the convolution kernel /, represented as a four-dimensional tensor. m
and # are position indices within the k x k convolution kernel, d is the channel index of the input feature
map, ¢ is the channel index of the output feature map, and (i, j) denotes the spatial position of the feature
map. ReLU(-) denotes the activation function, i.e., the rectified linear unit.
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When considering the convolution layer’s computation, the spatial size of the feature map is changed for
each convolution operation”. Let H, x W, denote the output feature map size of layer /, and its relation to
the previous layer’s output feature map size is calculated as

H;_4 —k+2p
N

Wi-1—k+2p
N

Hl:{ +1 (2)

WIZ{ +1 (3)

OFKNet includes a bottleneck module, which improves the expressive capacity of the network by expanding
and compressing the number of channels, enhancing the representation of characteristics while reducing
the computational cost. The input feature of the bottleneck module is denoted as x,. After a 1 x 1
convolutional layer, the number of channels is expanded to get the intermediate feature x,,. Then, the
feature x, is obtained after a 3 x 3 convolutional layer. Finally, the number of channels is restored through a
1 x 1 convolutional layer to obtain the output feature x,:

Xm = Conviyxy (x;,C; X 1) (4)
X = Convzys (X, Ci X 1,5 = 1) (5)
xo = Convixy (x4, C;) (6)

where Ci is the number of input channels of x, and t is the expansion factor. ConvNeXt performs
downsampling operations to convert high-resolution feature maps into low-resolution ones. Let F, denote
the input high-resolution feature map and F, denote the output low-resolution ones. We obtain:

Fi(i,j,c) =Conv (Fp(i Xr,jxXr,c),k,s=r) (7)

where r denotes the down-sampling factor. Based on this operation, the network extracts features at
multiple scales, generating feature maps F., F,, and F, at different resolutions, better capturing facial key
points of varying sizes.

Feature enhancement and fusion module

Based on the multi-scale feature maps F,, F,, and F, extracted by the ConvNeXt, an improved PAN is
employed to integrate features of different scales. PAN effectively merges low-level and high-level features
through top-down and bottom-up paths. The high-level feature map F, is upsampled to the size of F, and
weighted summed with F, to obtain an intermediate feature map F,:

Fu =y (F5)+ Fy (8)

where ¥(-) denotes the upsample process. Similarly, the low-level feature map F, is upsampled to the size of
F, and weighted summed with F, to get the feature map F:

Fg=4 (F3)+Fy (9)

Then, the top-down and bottom-up feature maps F, and F, are fused to obtain the final multi-scale feature
map F,;:
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Fp = Fu + Fd (10)

In this case, PAN facilitates information flow between feature maps"?. It enables features at different scales
to complement each other, ensuring that the network considers both local details and global structural
information. SE is then adopted by using PAN’s output to further enhance the feature representation
ability"”.. SE applies global average pooling (4) to obtain global features for each channel. It then computes
channel importance z, and channel weights s, using fully connected layers, i.e.,

ze = ¢ (Fp.c) (11)
se = ReLLU (WQ - ReLU (W7 - Zc)) (12)

where W, and W, are the weight matrices of the fully connected layers. Each channel’s weight s, is
multiplied with the input feature to obtain the final feature map F}:

FP' =FP-sc (13)

The combination of SE and PAN enhances the representation ability of the new feature map F},, allowing
it to better adapt to facial key points at different scales and complexities.

Key points detection module

Based on the processed feature mapF}, key point detection is performed using both the heatmap and the
regression branches. The heatmap branch generates more discriminative features that produce accurate 2D
Gaussian heatmaps, making the probability distribution of key points locations more precise. The regression
branch learns the mapping between key points’ coordinates and features, leading to more accurate key point
coordinate detection. The heatmap branch detects the 2D Gaussian heatmap for each key point through
convolution operations. It is assumed that the input feature F, is denoted as x, and the heatmap is obtained
through two convolution operations:

y1 = ReLU(Conv(x, 3 x 3,512)) (14)
ya = ReLU (Conv (y1, 3 X 3, 256)) (15)
h = Sigmoid (Conv (ys, 1 x 1)) (16)

where y, is obtained by subjecting x to a single convolutional transformation and a ReLU activation, and y,
is obtained by subjecting y, to another convolution and a ReLU activation. / is the heatmap for each key
point, ranging from [0,1], indicating the probability distribution of the point in space. The regression
branch directly detects the (x, y) coordinates of key points. When the input features are y, and y,, the
coordinates of the key points are detected through the convolutional layer as £; and Ji:

£, 91 = Conv (y2,1x 1) (17)
The total loss function L, consists of heatmap loss and regression loss. The heatmap loss L, is based on the

mean squared error, ensuring that the detected heatmap is close to the true heatmap. The regression loss
function L, ensures accurate coordinate detection, with weights w; distinguishing the importance of different
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key points. They are obtained as:

I IS (18)
h—NZ()’t vi)
i=1

L= ) wi (@ -x;)° (19)

e

Il
—_

1
L,=L,+L, (20)

where x; and y, are the true coordinates of the samples, N represents the number of samples used for
calculating the heatmap loss, and M indicates the number of samples used for calculating the regression
loss.

RESULTS

Experimental setting and evaluation metrics

All experiments are conducted using PyTorch on a single NVIDIA RTX 4090 GPU (24 GB memory). The
network backbone adopts ReLU activations in all intermediate layers, while the final output layer employs a
Sigmoid activation to generate the predicted outputs. The model is optimized with Adam for 60 epochs
using a learning rate of 107, batch size of 32, and a dropout rate of 0.25. Our dataset comprises 60 clinically
diagnosed patients with facial nerve dysfunction, including 32 males and 28 females. All participants are
assessed using the H-BGS and classified as grades II to V. Inclusion criteria require patients to have a
confirmed diagnosis of facial nerve dysfunction without other neurological or facial disorders. Exclusion
criteria include patients who failed to complete all facial movement tests. The clinical severity is categorized
as mild, moderate, severe, and very severe, with each category reasonably represented in the dataset. We
adopt a patient-level stratified splitting strategy to ensure that data from the same patient appear in only one
subset. The distribution consisted of 42 patients for training, 9 for validation, and 9 for testing. We maintain
proportional representation of different severity levels across all subsets during this division. The
distribution of patients across severity grades is balanced among the training, validation, and test sets.
Additionally, we ensure that different facial movement types are evenly distributed across all three subsets
to maintain dataset representativeness and training fairness.

Each participant completes five facial movement tests under standardized conditions: NeutralFace,
EyebrowRaise, ShrugNose, Smile, BlowCheek. Video capture uses a high-speed camera at 30 frames per
second with 4K resolution. Each action is recorded for 5 s, generating approximately 63,000 video frames in
total. Additionally, four eye movement tasks are performed: spontaneous eye blink (Spontaneous Eye
Blink), voluntary eye blink (Voluntary Eye Blink), soft eye closure (Soft Eye Closure), and forced eye closure
(Forced Eye Closure). For spontaneous and voluntary eye blinks, we increase the capture rate to 120 frames
per second, with each action recorded for approximately 10 s.

From the collected video frames, we apply a keyframe extraction strategy. Specifically, for the annotation of
40-point eye landmarks, we select keyframes based on the following criteria: peak frames showing changes
in eyelid opening and closing states (fully open, half-closed, and fully closed); transitional frames during
action changes (from static to dynamic states, from closed to open); and frames where bilateral asymmetry
is most pronounced. For the 14-point eye landmark annotations, the extraction criteria are relatively
relaxed: in addition to the above keyframes, we include the beginning, middle, and end frames of each
action sequence, as well as all frames showing significant changes in eyelid movement. We ensure that the
selected keyframes possess high representativeness for subsequent analysis. Following keyframe selection,
we conducted preprocessing on all videos. Initially, we perform quality screening to eliminate frames that
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are unsuitable for precise annotation due to blurriness, occlusion, or abnormal lighting conditions. This
process yielded 3,600 frames with fine annotations of 40-point eye landmarks (approximately 60 frames per
patient, covering key moments across different actions) and 5,400 frames with annotations of 14-point eye
landmarks (approximately 90 frames per patient). Subsequently, two annotators with professional medical
knowledge independently label all images. To evaluate annotation consistency, the inter-annotator
agreement shows an average Euclidean distance of less than 2 pixels, demonstrating high consistency and
reliability of the annotation results.

The main objective of this work is to evaluate the robustness and accuracy of different key point detection
models for eye-related feature points under pathological conditions. Two manually annotated datasets are

14,18,19

selected to achieve this: one with 14 eye feature points and another with 40 eye feature points*'*"”. Five
different facial landmark detection models are selected for comparative analysis, including MediaPipe Face
Landmarker™!, InsightFace”**”, Dlib6g"">*"! and DIibg1"**". By assessing their performance in detecting
eye feature points, we aim to assess their applicability and precision in diagnosing facial nerve dysfunction.
However, the models’ ability to process eye feature points varies significantly, particularly for datasets with
different numbers of points. Specifically, InsightFace, Dlibes, and Dlib81 cannot detect all 40 eye feature
points. To ensure fairness and comparability, a dataset with 14 eye feature points was also used for
comparison with models that cannot handle the full 40 points. Detailed descriptions of the 14- and 40-point

eye feature sets are provided in Table 1.

For the 40-feature-point dataset, OFKNet and MediaPipe Face Landmarker are evaluated, as they can detect
a more detailed set of eye feature points, including the complete eye contour, pupil position, and other key
points. In contrast, the dataset with 14 eye feature points is used for a broader comparison across all models.
In particular, Dlib68 and DIib81 do not detect the pupil center. To quantitatively compare detection
accuracy, three evaluation metrics are employed: mean Euclidean distance (MED), normalized mean error
(NME), and eye opening degree (EO). MED calculates the deviation between the detected and manually
annotated key points using Euclidean distance, quantifying the error for each key point. NME extends MED
by considering the influence of inter-individual eye size differences. It normalizes the error by using the
intercanthal distance, eliminating individual differences"**”. EO is an application-oriented metric that
quantifies eye closure by analyzing changes in the eye fissure area, aiding in model sensitivity assessment for
eye state changes in facial nerve dysfunction diagnosis'”?**>***%, Specifically, MED is defined as:

1 & 2 2
— Pp_ .8 p_ .8
MED = N i; \/(xi x5)7+ (07 = %) (21)

where N is the total number of key points. (x7 ¥F) denote the predicted coordinates of the key point i at a
given frame. x7, and y? represent the corresponding ground truth coordinates. NME is defined as:

d
NME = — & (22)
dist (Py, Py)

where d, is the average predicted deviation for the given image, P, and P, are the coordinates of the left and

right internal canthus points, and dist(P,, P,) is the Euclidean distance between the internal canthus points
of both eyes. Finally, EO is computed as:

_ S(P1.Py.....P17) (23)

EO :
|P1 — P1ol
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Table 1. Description of eye feature point indices for two datasets

14 eye feature points 14 eye feature points
Index Description Index Description
0-5 Right eye contour 0 Right internal canthus
6-11 Left eye contour 1-18 Right eye contour
12 Right pupil center 19 Left internal canthus
13 Left pupil center 20-37 Left eye contour
- - 38 Right pupil center
- - 39 Left pupil center

where P, is the external canthus point, P,, is the internal canthus point, and S(P,, P,, ..., P,,) is the area of the
eye fissure formed by these points.

Experiment results

One patient is selected to show eyebrow raise and voluntary blink actions as experimental data. Figure 3A
and B compares the errors between the detected 40-point eye landmarks and the manually annotated points
for OFKNet and MediaPipe Face Landmarker. It is shown that the results of the two models in detecting the
eye contour and pupil location are different, with OFKNet exhibiting higher detection accuracy.

Figure 4A-E presents the detection results of different models using the 14-point eye feature dataset.
OFKNet and MediaPipe Face Landmarker demonstrate higher accuracy, particularly in detecting the pupil
center and the internal and external canthus points.

To complement the single-image overlays in Figures 3-4, we present dataset-level mean NME heatmaps for
the eye landmarks in Figure 5A and B and Figure 6A-E. Each panel visualizes the canonical mean landmark
positions after intercanthal alignment. The color and size of each marker encode the NME at that landmark
(blue means low error, red means high error). The heatmaps show that OFKNet produces tightly localized
errors with consistently low mean NME across both the 14-point and 40-point eye landmark sets, whereas
competing methods exhibit higher errors at specific periocular landmarks, particularly near the pupil
centers and the internal canthus.

For completeness, Tables 2 and 3 report the landmark-wise median NME under the 40-point and 14-point
eye landmark protocols, respectively. These tables reveal that the largest discrepancies between OFKNet and
the baseline models are concentrated at the pupil centers and around the internal canthus, rather than being
uniformly distributed along the eyelid contours. Competing models exhibit notably higher errors at these
locations, whereas OFKNet maintains consistently low NME. This observation is consistent with the fact
that pupil centers are highly sensitive to specular highlights and low iris-sclera contrast, and that the
internal canthus is frequently affected by eyelid occlusions.

Compared with existing facial landmark detection architectures, OFKNet is specifically designed for fine-
grained analysis of ocular movements in neurological dysfunction assessment. MediaPipe Face Landmarker
maintains high-resolution feature representations, but its parallel multi-branch design results in high
computational overhead, limiting its practicality in clinical environments requiring lightweight and real-
time inference. InsightFace is optimized for identity recognition and global facial embeddings and thus
lacks the sensitivity to subtle ocular movement variations and local asymmetry, making it inadequate for
capturing clinically relevant neuromuscular dysfunctions. To address these challenges, OFKNet focuses on
high-precision ocular landmark representation by employing a denser, anatomically-informed annotation
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Table 2. Landmark-wise median NME for 40-point eye landmarks

Index Name OFKNet MediaPipe Face Landmarker
0 Right eye inner canthus 0.014625 0.069888
1 Right eye fissure pt1 0.025003 0.131626
2 Right eye fissure pt2 0.023567 0.143235
3 Right eye fissure pt3 0.019327 0.079514
4 Right eye fissure pt4 0.022034 0.034320
5 Right eye fissure pt5 0.021943 0.067446
6 Right eye fissure pté6 0.025659 0.033429
7 Right eye fissure pt7 0.029768 0.081202
8 Right eye fissure pt8 0.030149 0.102596
9 Right eye fissure pt9 0.032769 0.094153
10 Right eye fissure pt10 0.047507 0.071380
n Right eye fissure pt11 0.029674 0.068432
12 Right eye fissure pt12 0.025813 0.066482
13 Right eye fissure pt13 0.023307 0.053581
14 Right eye fissure pt14 0.018082 0.062717
15 Right eye fissure pt15 0.020398 0.072940
16 Right eye fissure pt16 0.016673 0.045427
17 Right eye fissure pt17 0.019200 0.098480
18 Right eye fissure pt18 0.027434 0.125767
19 Left eye inner canthus 0.017090 0.060292
20 Left eye fissure pt1 0.025160 0.119178
21 Left eye fissure pt2 0.026532 0.125558
22 Left eye fissure pt3 0.024732 0.072863
23 Left eye fissure pt4 0.025440 0.049547
24 Left eye fissure pt5 0.021750 0.063389
25 Left eye fissure pt6 0.026195 0.048040
26 Left eye fissure pt7 0.031359 0.098658
27 Left eye fissure pt8 0.034447 0.125999
28 Left eye fissure pt9 0.039735 0.114241
29 Left eye fissure pt10 0.042385 0.084921
30 Left eye fissure pt11 0.036168 0.079271
31 Left eye fissure pt12 0.034386 0.072576
32 Left eye fissure pt13 0.027273 0.055829
33 Left eye fissure pt14 0.023680 0.070046
34 Left eye fissure pt15 0.020342 0.074843
35 Left eye fissure pt16 0.023130 0.053575
36 Left eye fissure pt17 0.021925 0.095407
37 Left eye fissure pt18 0.022810 0.114364
38 Right eye pupil center 0.015409 0.040883
39 Left eye pupil center 0.020024 0.048256

OFKNet: Ocular-enhanced Face Keypoints Net.

scheme with 40 key points in the periorbital region. This fine-grained key point layout enables more
accurate characterization of eyelid contours, canthus morphology, and pupillary kinematics, significantly
enhancing sensitivity to subtle neuromuscular impairments. Building on this design philosophy, OFKNet
incorporates three architectural improvements to further enhance performance. To evaluate the
effectiveness of each component in OFKNet, we conduct a series of ablation experiments by progressively
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Table 3. Landmark-wise median NME for 14-point eye landmarks

Index Name OFKNet MediaPipe Face Landmarker InsightFace Dlib68 Dlib81

0 Right eye inner canthus 0.027655  0.051430 0.351867 0.595532 0.612037

1 Right eye fissure pt1 0.027297  0.033783 0.301907 0.236468  0.248296
2 Right eye fissure pt2 0.023986  0.030429 0.417628 0.254163 0.245944
3 Right eye fissure pt3 0.054597  0.049162 0.356569 0.617627 0.623798
4 Right eye fissure pt4 0.031232 0.038899 0.363480 0.233890  0.240538
5 Right eye fissure pt5 0.029241 0.032880 0.288261 0.245039  0.248924
6 Left eye inner canthus 0.040101 0.024548 0.355001 0.048595 0.065375
7 Left eye fissure pt1 0.026622  0.106866 0.393546 0.02301 0.027597
8 Left eye fissure pt2 0.024279  0.046832 0.353652 0.035522 0.047803
9 Left eye fissure pt3 0.055815 0.062109 0.387172 0.039402  0.064830
10 Left eye fissure pt4 0.031324 0.044572 0.287926 0.035347 0.060404
1 Left eye fissure pt5 0.024939  0.031595 0.407323 0.026595  0.043264
12 Right eye pupil center 0.018353 0.034018 0.195228

13 Left eye pupil center 0.023107 0.036842 0.213492

NME: Normalized mean error; OFKNet: Ocular-enhanced Face Keypoints Net.

Figure 3. Error comparison for 40-point eye landmarks detection. Red points indicate the ground truth (manual annotation), while green
points represent the model's predictions. (A) OFKNet; (B) MediaPipe Face Landmarker.

incorporating the proposed modules into the baseline framework. Specifically, ConvNeXt is adopted as the
baseline feature extraction network, upon which we sequentially add the MobileNetV3-based local
geometric enhancement module and the SE-PAN cross-scale adaptive feature fusion module. This results in
three model variants: (a) ConvNeXt backbone; (b) ConvNeXt + MobileNetV3; and (¢) ConvNeXt +
MobileNetV3 + SE-PAN (i.e., the full OFKNet). The quantitative results are summarized in Table 4.

Table 4 shows that the ConvNeXt backbone exhibits relatively limited performance on the eye landmark
detection task, particularly on the 40-point fine-level landmark set. This suggests that relying solely on high-
level semantic features is insufficient for capturing the subtle geometric variations present in the eye region.
Introducing the MobileNetV3 enhancement module yields a notable reduction in NME for both 40-point
and 14-point settings. This improvement demonstrates that local geometric and contour-aware feature
amplification is crucial for modeling the eyelid curvature, palpebral fissure shape, and canthus detail,
thereby improving localization accuracy. Further incorporating the SE-PAN module leads to consistent
performance gains. SE-PAN guides the network to adaptively fuse multi-scale features based on structural
importance, enabling the model to dynamically focus on the most discriminative local regions under
varying eye-opening states and individual anatomical differences. This confirms the effectiveness of the
proposed cross-scale attention-guided fusion strategy. In summary, the ablation results indicate that the
performance improvement of OFKNet does not stem merely from backbone selection or increased network
capacity.
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Table 4. Ablation study of OFKNet

40-point eye landmark NME 14-point eye landmark NME
Median Mean Std Median Mean Std
(a): ConvNeXt backbone 0.090576 0.094834 0.018902 0.060815 0.062735 0.016814
(b): (a) + MobileNetV3 0.052794 0.055437 0.012646 0.044178 0.045813 0.012136
(c): (b) + SE-PAN 0.026285 0.028996 0.009228 0.033222 0.034307 0.00943

OFKNet: Ocular-enhanced Face Keypoints Net; NME: normalized mean error; Std: standard deviation. Bold format indicates the whole part of the
model.
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Figure 4. Error comparison for 14-point eye landmarks detection. Red points indicate the ground truth (manual annotation), while green

points represent the model's predictions. (A) OFKNet; (B) MediaPipe Face Landmarker; (C) InsightFace; (D) DIlib68; (E) DIib81. OFKNet:
Ocular-enhanced Face Keypoints Net.
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Figure 5. Mean error distribution of eye landmarks (40 points). (A) OFKNet; (B) MediaPipe Face Landmarker. OFKNet: Ocular-
enhanced Face Keypoints Net.

Figure 7A shows the cumulative error distribution curve for each model in the 14-eye feature points
detection task, while Figure 7B presents the corresponding results for the 40 eye feature points. It is shown
that the iteration curves for OFKNet and MediaPipe Face Landmarker are relatively smooth with low error,
with OFKNet being the best. In contrast, comparative models show larger errors and a faster increase in
error. Table 5 summarizes the per-image NME statistics for all models under the 40-point and 14-point eye
landmark settings. For each baseline model, we perform a two-sided paired comparison against OFKNet on
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Table 5. NME for eye landmark detection across different models and datasets

Model 40-point eye landmark NME 14-point eye landmark NME
Median Mean Std P-value Median Mean Std P-value
OFKNet 0.026285 0.028996  0.009228 < 0.001 0.033222 0.034307 0.00943 <0.001
MediaPipe Face Landmarker 0.080603 0.083615 0.01862 <0.001 0.045109 0.049395  0.015408 <0.001
InsightFace - - - - 0.335803  0.354827 0.081584 <0.001
Dlib68 - - - - 0.208735  0.203527 0.022459 < 0.001
Dlib81 - - - - 0.218109 0.216568 0.01873 <0.001

NME: Normalized mean error; Std: standard deviation.

A o0y B 0.70 %
OFKNet El MediaPipe FaceLandmarker El
o o, e® © P o o, o® © 5
.... .... 035 & ...' .... 035 &
= =
Z Z
g g
0.00 5 000 5
c 00% P 0.70 %
. g . g
InsightFace E Dlib63 E
e e, °® B e o, e ® 5
OO.. ..OO 035 & @. o O 035 &
= =
Z Z
g g
0.00 3 000 5

E 0.70 %

g

Dlib81 E

o o4 o O : D)

(©) ® o o @ | o35 =

=

Z

8

0.00 5

Figure 6. Mean Error Distribution of Eye Landmarks (14 points). (A) OFKNet; (B) MediaPipe Face Landmarker; (C) InsightFace; (D)
Dlib68; (E) Dlib81. OFKNet: Ocular-enhanced Face Keypoints Net.

A 10 B 1o
§ 0.8 g 0.8
£ g
£0.6 £0.6
~ ~
2 2 *
£ 04 5 0.
=2 0 —— OFKNet <04
g —— MediaPipe FaceLandmarker g
© 0.2 —— InsightFace © 0.2
—— DIib68 | —— OFKNet
0.0 —— DIib81 0.0 [ —— MediaPipe FaceLandmarker
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
NME Threshold NME Threshold
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the common image subset. Two-sided paired Wilcoxon signed-rank tests between OFKNet and each
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baseline model on the common image subset using per-image NME as paired samples. Holm correction is
applied to control the family-wise error rate across multiple baseline comparisons. The resulting p-values
are reported in the rightmost columns. For both protocols, OFKNet achieves the lowest median NME, and
all pairwise comparisons against OFKNet are statistically significant (P < 0.001), confirming that the
improvements are not due to random variation. Beyond accuracy, we also benchmark the efficiency of all
models in terms of model size (MB) and inference time (ms). The results are summarized in Table 6.

The EO is a key indicator of the severity of facial nerve dysfunction, providing an objective measure of
eyelid closure for each eye. Figure 8(A—E) illustrates the EO degree over time for representative voluntary
blinking sequences, comparing OFKNet with all four baseline models. It is shown that OFKNet produces a
more precise and nuanced eye-opening degree curve than other methods. In all cases, the OFKNet curve
closely tracks the subtle changes in eyelid position throughout the blink cycle, including minor partial
closures and re-openings, resulting in a smooth, detailed waveform for the eye-opening degree. In contrast,
the compared methods yield coarser or less responsive curves. Their outputs tend to miss or flatten minor
variations in eye-opening, showing only significant dips corresponding to complete blinks but not finer
oscillations during slight or incomplete blinks. These visual comparisons highlight the superiority of
OFKNet in capturing minor variations in eye-opening degrees during voluntary blinking.

In addition, offering a data-driven representation of the eye’s opening and closing states enables a
quantitative assessment of eye-opening ability throughout the blinking cycle. This measurement is
applicable across different blinking stages and facilitates bilateral comparisons between the left and right
eyes, thereby characterizing neural motor function asymmetries. The dynamic variations in EO degree over
time offer a clear visual representation of facial nerve impairment and recovery, making it particularly
valuable in the clinical assessment of facial nerve dysfunction. In this work, we dynamically measure the EO
degrees of both eyes in patients exhibiting significant facial nerve dysfunction symptoms. To enhance
interpretability, we generate time-series graphs to illustrate temporal changes in EO degree. Furthermore,
keyframes extracted from patient data highlight the accuracy and reliability of the measurements,
reinforcing their potential utility in neurological evaluation and treatment monitoring. Therefore, we
conduct measurements of four characteristic eye movements in patients with facial nerve dysfunction:
Spontaneous Eye Blink, Voluntary Eye Blink, Soft Eye Closure and Forced Eye Closure. These movements
effectively simulate the majority of eye activities performed by individuals with facial paralysis in daily life,
enabling a comprehensive analysis of EO degree variations in both eyes. A detailed introduction to each
movement is provided below.

« Spontaneous Eye Blink refers to the involuntary blinking of the eyes that occurs without external stimuli
or conscious control. In this work, patients are instructed to relax their facial muscles through verbal cues,
allowing them to blink naturally for over 10 s while maintaining a relaxed state.

- Voluntary Eye Blink refers to a consciously controlled and deliberately initiated blink. In this study,
patients are instructed to keep their heads still, maintain direct eye contact with the camera, and blink three
times consecutively.

« Soft Eye Closure is a natural, unconscious action, and neurological abnormalities often first manifest in
such subtle movements. By assessing the ability to close the eyes softly, we can preliminarily evaluate
whether the orbicularis oculi muscle is functioning properly.
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Table 6. Model efficiency and complexity comparison

Model Model size (MB) Inference time (ms)
OFKNet 158.56 713.38

MediaPipe Face Landmarker 3.58 9.87

InsightFace 20.94 61.68

Dlib68 95.08 1,597.16

DIib81 18.83 1,601.14

OFKNet: Ocular-enhanced Face Keypoints Net.
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Figure 8. Comparison of eye opening degree curves for different models during voluntary blinking. (A) OFKNet; (B) MediaPipe Face
Landmarker; (C) InsightFace; (D) DIib68; (E) DIib81. OFKNet: Ocular-enhanced Face Keypoints Net.

» Forced Eye Closure is a conscious action that serves as an assessment of the strength of the eyelid muscles.
In patients with nerve damage or muscle weakness, insufficient muscle tension may be observed during
forceful eye closure, resulting in incomplete eyelid closure or difficulty closing the eyes. By having the
patient perform a forceful eye closure, we can evaluate the intensity of the action and analyze the speed,
symmetry, and smoothness of the closure through video analysis.

The line charts derived from the EO degree data clearly illustrate the temporal variation in eye openness
under different eye movement tasks. In each chart, the x-axis denotes the video frames, while the y-axis
represents the EO degree. The blue and red lines correspond to the EO degrees of the left and right eyes,
respectively. These plots reflect the patient’s ability to control facial muscles and serve as a basis for the
quantitative assessment of facial nerve dysfunction. From these line charts, one can intuitively observe
dynamic changes in EO degrees across time during various standard eye movements. Notably, at specific
moments, the difference between the EO degrees of the two eyes reaches a maximum, indicating a marked
asymmetry in binocular motor function. The most pronounced asymmetry consistently occurs during the
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peak amplitude phase of eyelid closure and exhibits a reproducible pattern across different patients and
tasks. These phases, serving as spatiotemporal windows where features of muscle weakness or paralysis are
most evident, hold important diagnostic value. Identifying and selecting these time points as key frames
facilitates accurate characterization of the condition’s severity and provides reliable reference data for
clinical evaluation. To further validate this observation, we extracted key frames from three patients
diagnosed with facial nerve dysfunction across four movement types and visualized their EO degree time
series. Figures 9-20 show that in each case, one eye is fully closed while the contralateral eye remains
partially open. This is consistent with the typical clinical manifestations of facial nerve dysfunction.

This phenomenon carries two important academic implications. First, it may extend beyond the scope of
traditional clinical observation; our method is capable of effectively capturing and documenting it, thereby
addressing a gap in current diagnostic and therapeutic approaches within specific observational dimensions.
Second, even if this phenomenon has been qualitatively recognized in clinical practice, conventional
methods often lack the precision and reproducibility required for quantitative analysis, which constrains the
development and application of targeted treatment strategies. Our approach overcomes these limitations by
enabling objective and repeatable assessment, thereby offering novel support for the refinement and
scientific advancement of clinical diagnosis and intervention.

DISCUSSION

From a practical standpoint, OFKNet supports real-time processing on standard clinical hardware, making
it readily deployable within routine examinations. Beyond feasibility, several implications of our findings
deserve emphasis. Current landmark models often struggle with ocular subtleties because the periocular
region contains small, rapidly deforming structures and clinically important areas such as the internal
canthus are prone to occlusion and low contrast. OFKNet’s fine-grained 40-point design and region-
enhanced representation directly address these challenges by allocating greater sensitivity to these difficult
zones. Fine-grained EO tracking may also integrate naturally into clinical workflows. EO trajectories offer
objective measures of blink completeness and interocular asymmetry typically judged subjectively. These
quantitative indicators could supplement existing grading scales such as House-Brackmann and
Sunnybrook by providing more continuous, reproducible assessments of eyelid function. Finally, OFKNet’s
region-specific modeling aligns with clinical heuristics, as neurologists commonly rely on internal-canthus
behavior to detect early or subtle muscle weakness.

Limitations

Our analysis focuses on the ocular region. While OFKNet can detect keypoints across the entire face, we
have not yet fully examined how features from other facial areas, such as the mouth corners or forehead,
might contribute to neurological assessment. Given that facial nerve dysfunction affects multiple muscle
groups, a more comprehensive analysis integrating these regions could yield richer diagnostic insights. In
addition, testing the system’s performance with standard medical imaging equipment would help determine
its practical deployment potential. Finding ways to reduce hardware requirements without sacrificing
accuracy represents an important direction for future development.

We demonstrate OFKNet’s effectiveness in facial paralysis assessment, but its utility for other neurological
conditions (Parkinson’s disease and Alzheimer’s disease) remains to be established. Different neurological
disorders may manifest distinct ocular movement patterns, requiring algorithm adaptations and dedicated
clinical validation. Additionally, longitudinal studies tracking patients over extended periods would clarify
whether this approach can effectively monitor disease progression and treatment response.
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Figure 19. Soft Eye Closure in Patient 3.

In addition, our study has several limitations arising from the controlled nature of data collection. All
recordings are captured under standardized indoor clinical conditions with stable lighting, fixed patient
positioning, and high-resolution imaging equipment. As a result, the current evaluation does not fully
reflect factors such as non-uniform illumination. Furthermore, the patient cohort consisted primarily of
East Asian individuals, and periocular morphology varies substantially across ethnic groups. Therefore,
cross-ethnic validation is required to establish generalizability. Finally, because the dataset is derived from
continuous video sequences, the frame-level redundancy inherent in temporal sampling may introduce
subtle correlations that increase the risk of model overfitting, even though patient-level data splitting is
applied to prevent identity leakage.

In conclusion, this work presents OFKNet, a fine-grained ocular landmark detection framework that
substantially improves the accuracy of eye-related keypoint localization during dynamic eyelid motion.
Beyond technical performance, OFKNet provides quantitative eye-opening trajectories and visualized
asymmetry indices that can support clinical decision-making. These measurements help clinicians evaluate
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Figure 20. Forced Eye Closure in Patient 3.

blink completeness, eyelid closure fatigue, and interocular imbalance, which are important factors for
treatment planning, prognostic assessment, and follow-up monitoring. OFKNet operates in real time on
standard clinical computing hardware, indicating that it can be deployed within existing examination rooms
without major infrastructure changes. This supports practical integration into routine neurological
assessments and facial nerve clinics.

Future work will focus on several translational directions. The next step is prospective multicenter
validation to ensure robustness across diverse imaging devices, ethnic groups, and recording environments,
which is necessary for broader clinical adoption and regulatory evaluation. Quantitative blink dynamics
obtained from OFKNet may also be incorporated into current grading systems to complement House-
Brackmann or Sunnybrook scales with objective and continuous measurements. In addition, expanding
analysis beyond the ocular region and integrating multimodal signals such as surface electromyography,
electroencephalography, or professional eye-tracking will help establish a more comprehensive and data-
driven framework for neurological function assessment.
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