
Expert Systems With Applications 250 (2024) 123896

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Partial and cost-minimized computation offloading in hybrid edge and cloud
systems✩

Haitao Yuan a,∗, Jing Bi b, Ziqi Wang b, Jinhong Yang c, Jia Zhang d

a School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
b School of Software Engineering in Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
c CSSC Systems Engineering Research Institute, Beijing, China
d Department of Computer Science in the Lyle School of Engineering at Southern Methodist University, Dallas, TX 75205, USA

A R T I C L E I N F O

Keywords:
Edge computing
Cloud data centers
Computation offloading
Particle swarm optimization
Genetic algorithm

A B S T R A C T

Nowadays, numerous mobile devices (MDs) provide nearly anytime and anywhere services, running on top
of various computation-intensive applications. However, bearing limited battery, bandwidth, computing, and
storage resources, MDs cannot completely execute all tasks of such applications in real-time. Cloud data
centers (CDCs) possess enormous resources and energy, which can help execute tasks offloaded from MDs.
Nonetheless, CDCs reside in remote sites, thereby leading to long transmission latency. In recent years, small
base stations (SBSs) have emerged to offer close proximity, high bandwidth, and low latency services to
their nearby and limited MDs. However, it becomes a new challenge to minimize the total system cost in
a complex and heterogeneous architecture. To address it, this work proposes an energy-minimized partial
computation offloading technique. First, a limited optimization problem of cost minimization for the system
is formulated. Afterward, an improved hybrid meta-heuristic algorithm is developed, which synergistically
combines a Metropolis acceptance criterion of simulated annealing and genetic operations. One uniqueness of
the proposed algorithm is that it simultaneously determines task allocation among MDs, an SBS, and a CDC, the
transmission power of MDs, and bandwidth allocation of wireless channels between MDs and SBS. Experiments
with real-life tasks from Google data centers have shown that the proposed Genetic Simulated-annealing-based
Particle swarm optimization (GSP) significantly achieves lower system cost and faster convergence speed than
benchmark peers.
1. Introduction

Over recent years, mobile devices (MDs) have supported a growing
number of heterogeneous mobile applications in different fields, includ-
ing social networking, online games, etc., which have become essential
components in our daily lives (Bi, Wang et al., 2023; Cong et al., 2020).
With the continuous advancements of mobile computing techniques,
present MDs may offer many computation-intensive applications. For
example, speech recognition and online games are increasingly de-
veloped and supplied on high-speed wireless networks and advanced
MDs (Qi et al., 2023). The applications often consume a lot of CPU,
memory, and battery energy. Yet, MDs only have limited wireless band-
width, battery capacity, computing, and storage resources. Thus, it is
impossible for MDs to completely execute such resource-hungry mobile
applications in real-time due to their resource limits. In addition, their

✩ This work was supported in part by the Beijing Natural Science Foundation under Grants 4232049 and L233005, the National Natural Science Foundation
of China under Grants 62173013 and 62073005, and the Fundamental Research Funds for the Central Universities, China under Grant YWF-22-L-1203.
∗ Corresponding author.
E-mail addresses: yuan@buaa.edu.cn (H. Yuan), bijing@bjut.edu.cn (J. Bi), ziqi_wang@emails.bjut.edu.cn (Z. Wang), yangjinhong.66@163.com (J. Yang),

jiazhang@smu.edu (J. Zhang).

lifetime can be significantly shortened if they execute too many tasks
because a lot of energy is consumed.

The cloud computing infrastructure, e.g., Amazon EC2, and
Rackspace, on the other side, possesses huge storage and computing
resources, thus being able to overcome the processing and battery limits
of MDs. In reality, MDs may allocate and offload some computing and
memory-intensive tasks of applications to remote cloud data centers
(CDCs) for execution (Bi et al., 2022a; Zhang et al., 2020; Zhu et al.,
2021). In other words, tasks of applications are often executed in MDs
or offloaded to CDCs in parallel. The energy consumed by MDs is sig-
nificantly decreased by offloading some tasks to remote CDCs (Sohaib
et al., 2023; Yuan & Zhou, 2021) In this way, MDs can guarantee
the performance of their applications without increasing their energy
consumption (Bozorgchenani et al., 2020). Yet, centralized CDCs are
vailable online 6 April 2024
957-4174/© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2024.123896
Received 22 December 2023; Received in revised form 27 February 2024; Accepted
 1 April 2024

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
mailto:yuan@buaa.edu.cn
mailto:bijing@bjut.edu.cn
mailto:ziqi_wang@emails.bjut.edu.cn
mailto:yangjinhong.66@163.com
mailto:jiazhang@smu.edu
https://doi.org/10.1016/j.eswa.2024.123896
https://doi.org/10.1016/j.eswa.2024.123896
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2024.123896&domain=pdf

Expert Systems With Applications 250 (2024) 123896H. Yuan et al.
often located in remote places far from MDs. Therefore, performance
may not be guaranteed if many tasks of delay-sensitive applications
(e.g., mobile video conference, and mobile online games) are offloaded
to remote centralized CDCs. Furthermore, in a market with a rapidly
increasing number of MDs, such an MD-CDC model tends to cause
enormous network traffic and congestion.

To address these drawbacks, in recent years, edge computing has
emerged to enable some pervasive and flexible network and computing
resources at the network edge to nearby MDs (Bi et al., 2022b; Yu
et al., 2020), in the format of edge servers or so-called small base
stations (SBSs). SBSs typically enable a partial computation offloading
strategy (Bi et al., 2021; Saleem et al., 2020; Silva et al., 2021), to
execute a portion of tasks of aforementioned latency-sensitive appli-
cations from resource-constrained MDs to nearby edge servers with
richer resources (Lin et al., 2020). In this way, SBSs provide MDs
with proximity, high bandwidth, and low latency access to resources in
edge servers. However, resources on the edge are usually less sufficient
compared with CDCs. Therefore, SBSs and remote CDCs are usually
connected with fiber links with low latency. For tasks demanding sig-
nificant computing power, SBSs will, in turn, allocate and offload them
to centralized CDCs. Thus, edge computing triggers a new MD-SBS-CDC
model representing a hybrid cloud and edge system.

However, the extra process of task offloading from MDs to SBSs, and
from SBSs to CDCs unavoidably causes additional latency and energy
consumption. Moreover, additional delays in waiting, communication,
and processing in CDCs may be incurred. As a result, the total system
cost of a hybrid cloud and edge system depends on the execution
cost of all involving MDs, SBSs, and CDCs. This work considers the
total system cost, which mainly includes the energy cost of running
tasks in MDs, the cost of running offloaded tasks in SBS, and that of
running offloaded tasks in CDC. Therefore, it has been recognized that
it is critical to achieve the total system cost minimization for an edge
computing system in such a complex and heterogeneous environment
while guaranteeing delay limits of mobile applications (Sahni et al.,
2021).

Above all, the main contributions of this work are four-fold.

1. This work designs a pervasive and fundamental architecture
for studying hybrid edge and cloud systems, including MDs,
SBS, and CDC. By analyzing the realistic characteristics of the
different devices, MDs, SBS, and CDC are characterized by het-
erogeneous triple queueing models to analyze their overall cost
and actual performance.

2. This work formulates and establishes the total cost minimization
of hybrid edge and cloud systems as a constrained optimization
problem, which considers several real-world constraints, includ-
ing limits of task latency, maximum transmission power of each
MD, available bandwidth of each channel between each MD and
SBS, available energy of each MD and SBS, available CPU and
memory resources, and task queue stability of MDs, SBS, and
CDC to extend the generalization of the proposed method.

3. The cost minimization problem is solved by a novel hybrid op-
timization algorithm named Genetic Simulated-annealing-based
Particle swarm optimization (GSP) that synergistically combines
a Metropolis acceptance rule of simulated annealing (SA), and
genetic operations of genetic algorithm (GA) into particle swarm
optimization (PSO). It well balances the exploration and ex-
ploitation abilities and has great robustness when solving our
formulated complex optimization problems.

4. Realistic data-driven experiments and comparisons with several
state-of-the-art algorithms have demonstrated that our proposed
GSP significantly achieves smaller costs and higher convergence
speed when solving the proposed constrained optimization prob-
2

lem.
The remainder of this article is given here. Section 2 introduces the
related work. The cost minimization problem is formulated in Section 3.
Section 4 gives GSP’s details. Section 5 explains the simulation results
to evaluate GSP over real-life tasks from Google data centers. Section 6
summarizes this article.

2. Related work

This section discusses the related work from two aspects, including
energy-efficient task offloading and resource allocation in cloud/edge
systems.

2.1. Energy-efficient task offloading

Recently, the energy-efficient task offloading problem has been
increasingly investigated in cloud and edge computing environments.
The work in Feng et al. (2022) reveals that it is essential to minimize
the total cost of a heterogeneous edge–cloud architecture due to the
energy-intensive and resource-hungry services. In this case, the authors
first construct an edge–cloud system. Then, the computation offloading
problem of multi-function service requests is formulated and solved by
a cost-minimized computation offloading algorithm with reconfigura-
tion. This method jointly considers the resource allocation and service
reconfiguration to minimize the total system cost. However, the edge–
cloud architecture does not consider the mobility of users. Moreover,
this work does not take into account the transmission power of users
that we have considered. The work in Dai et al. (2020) adopts a deep
reinforcement learning (DRL) method to design an effective policy
of computation offloading and resource allocation, to decrease the
energy consumed by hybrid networks. A Markov decision process is first
leveraged to optimize computation offloading and resource allocation.
Then, DRL is used to reduce the consumed energy. In contrast to
their approach, our work considers a different scenario and adopts an
improved meta-heuristic algorithm to decrease the total energy. The
work in Ale et al. (2021) targets increasing the number of finished
tasks and decreasing the consumed energy. They design a DRL method
to determine the optimal edge server to execute offloaded tasks, and
an optimal number of resources is specified to maximize the expected
utility. Unlike their work, our research considers hybrid cloud and
edge systems, including MDs, SBS, and CDC. The work in Wu et al.
(2020) proposes a computation offloading method to reduce the energy
consumed by a fog system to meet tasks’ delay constraints. A mixed
nonlinear integer program is formulated and handled by a method of
Benders decomposition to yield the optimal offloading strategy. Unlike
their work, our research considers more real-life factors and constraints
in hybrid cloud and edge systems. The work in Yuan, Hu et al. (2022)
jointly optimizes task partitioning, task offloading, and user associ-
ations to achieve the total cost minimization of hybrid cloud–edge
systems. They mainly consider applications, which are divisible and
can be split into several dependent subtasks completed in MDs, edge
nodes, and CDC. Different from it, this work considers a single SBS
and integrates the execution cost of offloaded tasks in SBS in the
problem formulation. The work in Su et al. (2024) focuses on the energy
consumption of a mobile edge computing system. Specifically, a gen-
eral cloud–edge collaborative computation offloading model includes
multiple mobile terminals, multiple edge servers, and a remote cloud
center. Moreover, the energy consumption for edges and cloud is cal-
culated separately by considering both transmission and computational
energy consumption. Finally, an offloading strategy with near real-time
decision-making is proposed to minimize the energy consumption of
the system. Unlike their work, our research considers more real-life
constraints, e.g., limits of task latency, maximum transmission power
of each MD, and available bandwidth of each channel between each
MD and SBS to extend the generalization of the proposed edge–cloud
model. The work in Mu et al. (2020) develops a dynamic approach
for achieving computation offloading in an edge network, where many

Expert Systems With Applications 250 (2024) 123896H. Yuan et al.

m
i
r
c
𝑝

t
a

3

o
i
o
t

𝑇

MDs share common resources to support their delay-sensitive applica-
tions. They aim to seek the optimal trade-off between energy consumed
by MDs and tasks’ delay, such that given out-of-service probability is
guaranteed. Unlike their work, our research aims to minimize the cost
of hybrid cloud and edge systems in which the formulated problem is
more realistic and complicated.

In summary, different from these aforementioned studies, we for-
mulate a fundamental edge–cloud architecture including MDs, SBS,
and CDC and design an enhanced computation offloading approach.
This method optimizes resource allocation and reduces the energy
consumption of the system. It focuses on delay-intensive applications
in such systems. It considers many real-life constraints, including limits
of task latency, maximum transmission power of each MD, available
bandwidth of each channel between each MD and SBS, available energy
of each MD and SBS, available CPU and memory resources, and task
queue stability of MDs, SBS, and CDC to satisfy user requirements.

2.2. Resource allocation in hybrid systems

More studies have been given on resource allocation in hybrid
edge/cloud systems. The work in Zaw et al. (2023) considers the alloca-
tion of both communication and computing resources in a multi-access
edge computing system. The authors first formulate the allocation
models of uplink, downlink, and computing resources for this system.
Then, the resource allocation problem is solved by two decentralized
algorithms that adopt a penalty function method to handle the device
performance constraints. However, their architecture does not involve
cloud computing, thus failing to establish an edge–cloud collabora-
tion architecture. Moreover, the overall complexity of this method is
relatively high, thus making it challenging to be applied in practi-
cal applications. The work in Xu et al. (2021) proposes strategies to
realize beam selection and user scheduling in a cloud–edge system.
A constrained process of Markov decision is formulated to minimize
long-term average network delay, such that users’ quality of service
is guaranteed. Unlike their work, we minimize the total cost of the
hybrid system. The work in Casola et al. (2020) presents a cloud–
edge allocation mechanism for an industrial environment. It considers
performance, cost, and security caused by on-demand service delivery
and dynamically deployed applications. In contrast, we design a more
fine-grained optimization model in which more realistic factors are
considered. The work in Wang et al. (2017) develops a paradigm for
multimedia sensing services in multimedia communication systems.
High flexibility and diversity of data are provided in its application
layer. Then, the allocation of wireless uplink resources is optimized
accordingly to minimize the energy cost of wireless communication.
Different from their work, we focus on energy-efficient partial compu-
tation offloading. The work in Sun et al. (2024) considers the resource
allocation problem in a vehicular edge computing architecture. The
authors construct a hierarchical framework including vehicle, edge,
control, and cloud layers. Moreover, cooperative resource allocation
and task offloading algorithms are proposed to coordinate the hetero-
geneity among tasks and servers to improve the resource utilization of
the system and service satisfaction for vehicles. However, this work
does not consider the fairness of resource scheduling and allocation
among different vehicles. In addition, their considered constraints do
not include the limit of maximum transmission power of each vehicle.
The work in Ren et al. (2019) formulates an allocation problem of com-
putation and communication resources for minimizing the weighted-
sum latency of MDs. It is then transformed into a convex optimization
one, and a closed-form task offloading policy is obtained accordingly.
However, it aims to minimize the delay by using a collaborative cloud
and edge computing manner. The work in Bi et al. (2021) designs a
computation offloading approach to minimize the energy consumption
of MDs and an edge server by optimizing task offloading ratios, CPU
running speeds of MDs, channel bandwidth allocation, and transmission
3

power of MDs. It ignores the cloud in its hybrid edge computing system
including multiple MDs and an edge server. Different from it, this work
considers a more complicated system including MDs, SBS, and CDC.

Different from the aforementioned studies, we formulate an edge–
cloud collaborative system and adopt 𝑀/𝑀/1, 𝑀/𝑀/𝑐 and 𝑀/𝑀/∞
queues to analyze and monitor MDs, SBS, and CDC, respectively. Our
approach considers the limited resources of both users and the edge.
It simultaneously determines the allocation of bandwidth resources in
transmission networks, task offloading among MDs, SBS, and CDC, and
MDs’ data transmission power. Moreover, this method also minimizes
the total cost of hybrid cloud and edge systems, including MDs, SBS,
and CDC.

3. Problem formulation

We formulate the cost minimization problem based on our proposed
architecture for hybrid cloud and edge systems. Core notations used in
this work are listed in Table 1.

To study the cost minimization problem of hybrid cloud and edge
systems, we propose an architecture, as illustrated in Fig. 1. Without
losing generality and making it easier to build a model, the architecture
comprises multiple MDs, an SBS, and a CDC. Such an architecture il-
lustrates a typical partial computation offloading architecture of hybrid
cloud and edge systems. Each task may run in MDs, SBS, and/or CDC.
In this architecture, tasks are offloaded to SBS/CDC through wireless
channels shared by multiple MDs. The SBS is connected to the CDC
through high-speed fiber links. In this work, we consider computation-
intensive tasks that are independent of each other and executed in MDs
or SBS/CDC by using partial computation offloading. Moreover, in the
system, the offloading strategy is determined in the SBS. The reasons
are given as follows. First, SBS has more computational resources than
MDs. Therefore, it has enough computational resources and perfor-
mance to execute GSP. Second, SBS communicates with MDs directly,
which reports their current states, like residual energy, to SBS. In this
case, SBS can collect the performance metrics of MDs.

To analyze and monitor the MD-SBS-CDC architecture over par-
tial computation offloading scenarios, we construct a triple queueing
model. As illustrated in Fig. 1, there are 𝑁 MDs in the system. Each MD
supports a specific type of application and yields tasks continuously.
Thus, we decide to select a model of 𝑀/𝑀/1 queue (Gong et al.,
2020) to evaluate the behavior of an MD. Taking into account their
different roles in the partial computation offloading scenarios, the SBS
is analyzed as a model of 𝑀/𝑀/𝑐 queue (Whaiduzzaman et al., 2018),
and the CDC is analyzed as an 𝑀/𝑀/∞ queue model (Li et al., 2019).

To study the cost minimization problem of such an architecture, we
assume that tasks from each MD 𝑖 arrive in a process of Poisson (Chetlur
& Dhillon, 2020), and the average task arriving rate is 𝜆𝑖. 𝑝𝑜𝑖 (0 ≤ 𝑝𝑜𝑖 ≤ 1)

eans the ratio of tasks offloaded from MD 𝑖. Similarly, tasks processed
n MD 𝑖 also conform to the Poisson process, and their average arriving
ate is (1 − 𝑝𝑜𝑖)𝜆𝑖. Likewise, tasks scheduled to the SBS and CDC also
onform to the process of Poisson, and their average arriving rate is
𝑜
𝑖 𝜆𝑖.

In the next subsections, we first formulate the modeling of MDs,
he SBS, and the CDC, formulate the cost and latency models for the
rchitecture, and finally formulate a constrained optimization problem.

.1. Modeling of MDs

This work adopts a model of 𝑀/𝑀/1 queue to analyze the behavior
f each MD. 𝜇𝑀𝑖 means the task execution rate of MD 𝑖, and 𝑙𝑀𝑖 means
ts CPU utilization. According to Bi et al. (2021), the task arriving rate
f MD 𝑖 is (1 − 𝑝𝑜𝑖)𝜆𝑖, and its task service rate is 𝜇𝑀𝑖 (1 − 𝑙𝑀𝑖). 𝑇𝑀𝑖 means
he average time of locally running tasks in MD 𝑖, which is obtained as:

𝑀
𝑖 = 1

𝑀 𝑀 𝑜 (1)

𝜇𝑖 (1 − 𝑙𝑖) − (1 − 𝑝𝑖)𝜆𝑖

Expert Systems With Applications 250 (2024) 123896H. Yuan et al.
Fig. 1. Partial computation offloading architecture of hybrid cloud and edge systems.
Table 1
Main notations.

Notation Definition

𝑁 Number of MDs
𝜆𝑖 Mean arriving rate of tasks from MD 𝑖

𝑝𝑜𝑖 Ratio of offloaded tasks from MD 𝑖

𝑇𝑀𝑖 Average time for running tasks in MD 𝑖

𝐿𝑚𝑎𝑥 Response time limit of tasks in MDs
𝜇𝑀𝑖 Service rate for MD 𝑖

𝑙𝑀𝑖 CPU utilization for MD 𝑖.
𝜃𝑖 Time series of workload smoothed with a Savitzky–Golay filter
𝐸1
𝑖 Energy consumption of tasks finished in MD 𝑖

𝜙𝑀𝑖 Power of running tasks in MD 𝑖

𝑓𝑀𝑖 Running speed (CPU cycles/s) of MD 𝑖

𝑘𝑀𝑖 Constant for the chip architecture of MD 𝑖

�̂�𝑀
𝑖 Maximum energy of MD 𝑖

𝐸2
𝑖 Energy consumption of transmitting tasks from MD 𝑖 to SBS

𝑇 𝑡𝑖 Transmission time of delivering tasks from MD 𝑖 to SBS
𝑃𝑖 Transmission power of delivering tasks from MD 𝑖 to SBS
𝛾𝑀𝑖 Proportion of bandwidth allocated to MD 𝑖 between it and SBS
𝑃 𝑚𝑎𝑥
𝑖 Maximum power of transmission for MD 𝑖

𝑅𝑖 Transmission rate (bits/s) between MD 𝑖 and SBS
𝑆 Channel number between MDs and SBS
𝑊 Channel bandwidth
ℎ𝑖 Circularly symmetric and complex Gaussian constant
𝜔0 White Gaussian noise power
𝑑𝑖 Distance between MD 𝑖 and SBS
𝑣 Path loss coefficient
𝜓𝑆𝐵𝑆 Proportion of tasks offloaded to SBS
𝛼𝑖 CPU cycle number for running each bit of data in MD 𝑖
�̂� Number of available CPU cycles
𝑔𝑖 Number of memories needed by executing the input data of MD 𝑖

�̂� Maximum number of memories
𝜆𝑆𝐵𝑆𝑝 Arriving rate of tasks in SBS
𝜆𝑆𝐵𝑆𝑚𝑎𝑥 Maximum execution rate of task of SBS
𝑐 Number of homogeneous servers
𝑢𝑆𝐵𝑆𝑐 Task execution rate in a server of SBS
𝑇 𝑆𝐵𝑆𝑤𝑎𝑖𝑡 Average time of waiting for tasks offloaded to SBS
𝑇 𝑆𝐵𝑆𝑏 Expected waiting time for executed results in SBS
�̂�𝑆𝐵𝑆 Maximum energy in SBS
𝑘𝑆𝐵𝑆 Constant for the chip architecture in SBS
𝑓𝑆𝐵𝑆 Working speed of SBS
𝑢𝐶𝑏 Task transmission rate in CDC
ϝ𝑀 Cost of executing tasks in MDs
𝑟𝑀 Price ($/kWh) of energy in MDs
𝑢𝑆𝐵𝑆𝑏 Transmission rate of tasks in SBS
ϝ𝑆𝐵𝑆 (ϝ𝐶) Cost of executing tasks offloaded in SBS (CDC)
𝑟𝑆𝐵𝑆 (𝑟𝐶) Cost of executing each task in SBS (CDC)
ϝ Total cost of the system
𝑇 𝑜𝑖 Average latency of tasks executed in SBS and CDC
𝑇 𝐶𝑤𝑎𝑖𝑡 Average waiting time of tasks offloaded in CDC
𝑢𝐶 Task processing rate of CDC
𝑇 𝐶𝑏 Expected waiting time of execution results in CDC
4

For MD 𝑖, the tasks it handles cannot exceed its processing capacity.
Thus, task arriving rate must be less than or equal to its task execution
rate, i.e.,

(1 − 𝑝𝑜𝑖)𝜆𝑖 < 𝜇
𝑀
𝑖 (1 − 𝑙𝑀𝑖), 1 ≤ 𝑖 ≤ 𝑁 (2)

𝐸1
𝑖 denotes the energy consumed by executed tasks in MD 𝑖. 𝜙𝑀𝑖

means the power of running tasks in MD 𝑖. For each MD 𝑖, its CPU
running speed can be adjusted with the technology of dynamic voltage
and frequency scaling by following the users’ workload. Thus, energy
consumed by MDs can be decreased by reducing their CPU running
speeds. According to Wang et al. (2016), this work models the power
consumption (𝜙𝑀𝑖) of the CPU in MD 𝑖 as 𝑘𝑀𝑖 (𝑓𝑀𝑖)3, where 𝑓𝑀𝑖 is
the running speed (CPU cycles/s) of MD 𝑖, and 𝑘𝑀𝑖 is a coefficient
depending on its chip architecture. Then, 𝐸1

𝑖 is obtained as:

𝐸1
𝑖 = 𝜙𝑀𝑖 𝑇

𝑀
𝑖 = 𝑘𝑀𝑖 (𝑓𝑀𝑖)3 1

𝜇𝑀𝑖 (1 − 𝑙𝑀𝑖) − (1 − 𝑝𝑜𝑖)𝜆𝑖
(3)

For MD 𝑖, its energy consumption for running its tasks must be less
than or equal to its upper limit, i.e.,

𝑘𝑀𝑖 (𝑓𝑀𝑖)3 1
𝜇𝑀𝑖 (1 − 𝑙𝑀𝑖) − (1 − 𝑝𝑜𝑖)𝜆𝑖

≤ �̂�𝑀𝑖 , 1 ≤ 𝑖 ≤ 𝑁 (4)

where �̂�𝑀𝑖 denotes the maximum energy of MD 𝑖.
𝐸2
𝑖 and 𝑇 𝑡𝑖 denote the energy consumption and the time of delivering

data from MD 𝑖 to the SBS. 𝜃𝑖 is the input data size (bits) of a task of
MD 𝑖. 𝐸2

𝑖 is given as:

𝐸2
𝑖 = 𝑃𝑖𝑇

𝑡
𝑖 =

𝑃𝑖𝑝𝑜𝑖 𝜆𝑖𝜃𝑖
𝑅𝑖

(5)

where 𝑃𝑖 is the transmission power of delivering data from MD 𝑖 to the
SBS, and 𝑅𝑖 denotes the transmission rate (bits/second) of delivering
data between MD 𝑖 and the SBS.

For MD 𝑖, the transmission power of delivering data from it to the
SBS must be less than or equal to its limit, i.e.,

0 < 𝑃𝑖 < 𝑃𝑚𝑎𝑥𝑖 (6)

where 𝑃𝑚𝑎𝑥𝑖 is the maximum transmission power of MD 𝑖.
For MD 𝑖, its allocation proportion of the bandwidth of the channel

between it and the SBS must be less than or equal to 1, i.e.,

0 ≤ 𝛾𝑀𝑖 ≤ 1, 1 ≤ 𝑖 ≤ 𝑁 (7)

Moreover, to ensure better utilization of bandwidth resources be-
tween MDs and SBS, the sum of bandwidth allocation proportions of
all channels between all MDs and the SBS must equal 1, i.e.,
𝑁
∑

𝑖=1
𝛾𝑀𝑖 = 1 (8)

Let 𝑅𝑖 denote the transmission rate (bits/second) of delivering data
between MD 𝑖 and the SBS. Following Bi et al. (2021),

𝑅𝑖 = 𝑆𝛾𝑀𝑖 𝑊 log
(

2

(

1 +
𝑃𝑖(𝑑𝑖)−𝑣|ℎ𝑖|

2

𝜔0

))

(9)

where 𝑆 is the channel number between MDs and the SBS, 𝑊 is the
total channel bandwidth, ℎ𝑖 is a circularly symmetric and complex
Gaussian constant, 𝜔0 is the white Gaussian noise power, 𝑑𝑖 is a distance
between MD 𝑖 to the SBS, and 𝑣 is a path loss coefficient.

Expert Systems With Applications 250 (2024) 123896H. Yuan et al.

𝐸

𝑝
S
o
r
o
o
i

∑

w

c

∑

w
M

d
r

𝜆

w

In addition, the size of completed results for typical applications is
much smaller than the input data (Luo et al., 2021). The assumption
that the size of output is significantly smaller than the input data is
reasonable similar to Khayyat et al. (2020) and Zhang et al. (2021).
Thus, this work does not consider the energy of sending completed
results to MDs. The total energy of MD 𝑖 consists of that for tasks
executed in MDs and that for transmitting data to the SBS. 𝐸𝑖 is the
energy consumption of MD 𝑖, i.e.,

𝑖 = (1 − 𝑝𝑜𝑖)𝐸
1
𝑖 + 𝑝

𝑜
𝑖𝐸

2
𝑖 (10)

3.2. Models of SBS and CDC

𝜓𝑆𝐵𝑆 denotes the ratio of tasks offloaded to the SBS and it is
obtained as:

𝜓𝑆𝐵𝑆 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, 𝜆𝑆𝐵𝑆𝑚𝑎𝑥 ≥
𝑁
∑

𝑖=1
𝜆𝑖𝑝

𝑜
𝑖

𝜆𝑆𝐵𝑆𝑚𝑎𝑥
∑𝑁
𝑖=1 𝜆𝑖𝑝

𝑜
𝑖
, otherwise

(11)

The average arriving rate of tasks scheduled to the SBS and CDC is
𝑜
𝑖 𝜆𝑖. Given 𝜓𝑆𝐵𝑆 , the average arriving rate of tasks scheduled to the
BS is 𝑝𝑜𝑖 𝜆𝑖𝜓

𝑆𝐵𝑆 . Thus, the total input data size (bits) of all MD 𝑖’s tasks
ffloaded to the SBS is

(

𝑝𝑜𝑖 𝜆𝑖𝜓
𝑆𝐵𝑆) 𝜃𝑖. 𝛼𝑖 is the CPU cycle number for

unning one bit of input data for tasks from MD 𝑖. The total number
f CPU cycles for running all bits of input data for tasks from MD 𝑖
ffloaded to the SBS is

(

𝑝𝑜𝑖 𝜆𝑖𝜓
𝑆𝐵𝑆) 𝜃𝑖𝛼𝑖, which cannot exceed the limit,

.e.,
𝑁

𝑖=1

(

𝜆𝑖𝑝
𝑜
𝑖𝜓

𝑆𝐵𝑆) 𝜃𝑖𝛼𝑖 ≤ �̂� (12)

here �̂� denotes the number of total CPU cycles.
Similarly, the number of memories needed by tasks in the SBS

annot exceed its upper limit, i.e.,
𝑁

𝑖=1
𝜃𝑖𝜆𝑖𝑝

𝑜
𝑖𝜓

𝑆𝐵𝑆𝑔𝑖 ≤ �̂� (13)

here 𝑔𝑖 is the number of memories needed by executing each bit for
D 𝑖’s tasks, and �̂� is the total number of memories.
𝜆𝑆𝐵𝑆𝑝 is the task arriving rate in the SBS. According to properties of

ifferent independent Poisson processes for multiple MDs, the arriving
ate of all tasks from MDs in the SBS, 𝜆𝑆𝐵𝑆𝑝 , is given as:

𝑆𝐵𝑆
𝑝 =

⎧

⎪

⎨

⎪

⎩

𝑁
∑

𝑖=1
𝜆𝑖𝑝

𝑜
𝑖 , 𝜆𝑆𝐵𝑆𝑚𝑎𝑥 ≥

𝑁
∑

𝑖=1
𝜆𝑖𝑝

𝑜
𝑖

𝜆𝑆𝐵𝑆𝑚𝑎𝑥 , otherwise

(14)

here 𝑁 denotes the MD number, 𝜆𝑆𝐵𝑆𝑚𝑎𝑥 is SBS’s maximum task execu-
tion rate.

Besides, the arriving rate of tasks in SBS cannot exceed its task
execution rate and task transmission rate, i.e.,

𝜆𝑆𝐵𝑆𝑝 < 𝑢𝑆𝐵𝑆𝑐 (15)

𝜆𝑆𝐵𝑆𝑝 < 𝑢𝑆𝐵𝑆𝑏 (16)

where 𝑢𝑆𝐵𝑆𝑐 and 𝑢𝑆𝐵𝑆𝑏 denote the task execution rate and task transmis-
sion rate of the SBS, respectively.

Following Jia et al. (2017), we adopt a model of 𝑀/𝑀/𝑐 queue to
analyze the behavior of the SBS. We assume that there are 𝑐 homoge-
neous servers in the SBS. 𝑢𝑆𝐵𝑆 is the task execution rate of a server in
the SBS. 𝑇 𝑆𝐵𝑆𝑤𝑎𝑖𝑡 is the average waiting time of all tasks offloaded to the
SBS, i.e.,

𝑇 𝑆𝐵𝑆𝑤𝑎𝑖𝑡 = 𝛥
𝑆𝐵𝑆 𝑆𝐵𝑆 + 1

𝑆𝐵𝑆 (17)
5

𝑢 𝑐 − 𝜆𝑝 𝑢
𝛥 =

(

𝑐𝜌𝑆𝐵𝑆

𝑢𝑆𝐵𝑆 𝑐−𝜆𝑆𝐵𝑆𝑝

)

(

1
1−𝜌𝑆𝐵𝑆

)

∑𝑐−1
𝑘=0

(𝑐𝜌𝑆𝐵𝑆)𝑘
𝑘! +

(

𝑐𝜌𝑆𝐵𝑆

𝑢𝑆𝐵𝑆 𝑐−𝜆𝑆𝐵𝑆𝑝

)

(

1
1−𝜌𝑆𝐵𝑆

)

(18)

𝜌𝑆𝐵𝑆 =
𝜆𝑆𝐵𝑆𝑝

𝑢𝑆𝐵𝑆𝑐
(19)

In addition, 𝑇 𝑆𝐵𝑆𝑏 is the average waiting time of results in the SBS
before they are completely transmitted, i.e.,

𝑇 𝑆𝐵𝑆𝑏 = 1
𝑢𝑆𝐵𝑆𝑏 − 𝜆𝑆𝐵𝑆𝑝

(20)

Finally, the amount of energy consumed by SBS cannot exceed its
limit, i.e.,
𝑁
∑

𝑖=1
𝑘𝑆𝐵𝑆 (𝑓𝑆𝐵𝑆)3(𝑇 𝑆𝐵𝑆𝑤𝑎𝑖𝑡 + 𝑇 𝑆𝐵𝑆𝑏) ≤ �̂�𝑆𝐵𝑆 (21)

where �̂�𝑆𝐵𝑆 is the maximum energy in the SBS, 𝑘𝑆𝐵𝑆 is a constant of
the chip architecture of the SBS, and 𝑓𝑆𝐵𝑆 is the running speed of the
SBS.

Similar to Li et al. (2019), we use a model of 𝑀/𝑀/∞ queue
to evaluate the behavior of the CDC. For the CDC, it has abundant
computational resources. Thus, we do not consider its computational
resource constraints. However, the task arriving rate cannot exceed its
maximum transmission rate of tasks, i.e.,
(𝑁
∑

𝑖=1
𝜆𝑖𝑝

𝑜
𝑖

)

− 𝜆𝑆𝐵𝑆𝑝 < 𝑢𝐶𝑏 (22)

where 𝑢𝐶𝑏 is the transmission rate of tasks in the CDC.

3.3. Total cost

The cost of the system is closely related to its energy consumption.
ϝ𝑀 denotes the cost of running tasks in MDs, i.e.,

ϝ𝑀 = 𝑟𝑀
𝑁
∑

𝑖=1
𝐸𝑖 (23)

where 𝑟𝑀 is the energy price ($/kWh) of MDs.
ϝ𝑆𝐵𝑆 is the cost of running offloaded tasks in SBS, i.e.,

ϝ𝑆𝐵𝑆 = 𝑟𝑆𝐵𝑆𝜆𝑆𝐵𝑆𝑝 (24)

where 𝑟𝑆𝐵𝑆 denotes the cost of running a task in the SBS.
ϝ𝐶 is the cost of running offloaded tasks in the CDC, i.e.,

ϝ𝐶 = 𝑟𝐶
(𝑁
∑

𝑖=1
𝜆𝑖𝑝

𝑜
𝑖 − 𝜆

𝑆𝐵𝑆
𝑝

)

(25)

where 𝑟𝐶 denotes the cost of running a task in the CDC.
Finally, ϝ is the total system cost including ϝ𝑀 , ϝ𝑆𝐵𝑆 and ϝ𝐶 .

ϝ = ϝ𝑀 + ϝ𝑆𝐵𝑆 + ϝ𝐶 (26)

3.4. Latency model

Similar to Ren et al. (2019), we ignore the time for sending results
back to MDs. 𝑇 𝑜𝑖 is the average time of executing tasks in the SBS and
CDC, i.e.,

𝑇 𝑜𝑖 = 𝑇 𝑡𝑖 + 𝜓
𝑆𝐵𝑆 (𝑇 𝑆𝐵𝑆𝑤𝑎𝑖𝑡 + 𝑇 𝑆𝐵𝑆𝑏) + (1 − 𝜓𝑆𝐵𝑆)(𝑇 𝐶𝑤𝑎𝑖𝑡 + 𝑇

𝐶
𝑏) (27)

𝑇 𝐶𝑤𝑎𝑖𝑡 is the average waiting time for offloaded tasks in the CDC. 𝑇 𝐶𝑤𝑎𝑖𝑡
includes the time of transmitting data from the SBS to the CDC and the
running time in the CDC. Thus,

𝑇 𝐶𝑤𝑎𝑖𝑡 = 𝑇 𝑜 + 1
𝑢𝐶

(28)

where 𝑢𝐶 is the task execution rate of the CDC.

Expert Systems With Applications 250 (2024) 123896H. Yuan et al.

b

𝑇

𝐿

𝑝

s

m

(

𝑘

s
s

(
i

o
i

𝜆

o
m
d
i
e
a
b
E
d
i
l
a
S
o
c
a
o
e

l
i
𝑣
𝑃
i
N
b

𝐱

𝑣

w
a
c

c
g
f

𝐱

𝐱

w

After the CDC executes offloaded tasks, the CDC sends the finished
results back to the SBS, which in turn forwards them back to MDs.
𝑇 𝐶𝑏 means the average waiting time for the finished results in the CDC
efore they are completely sent out. Then,

𝐶
𝑏 = 1

𝑢𝐶𝑏 −
(

∑𝑁
𝑖=1 𝜆𝑖𝑝

𝑜
𝑖 − 𝜆𝑆𝐵𝑆𝑝

) (29)

It is assumed that tasks in MDs and those offloaded to the SBS and
the CDC are finished in parallel. The average time of tasks in MD 𝑖, 𝐿𝑖,
cannot exceed its limit 𝐿𝑚𝑎𝑥, i.e.,

𝑖 = max
(

𝑇𝑀𝑖 , 𝑇 𝑜𝑖
)

≤ 𝐿𝑚𝑎𝑥 (30)

3.5. Limited optimization problem

According to above discussion, we aim to minimize ϝ, i.e.,

𝐌𝐢𝐧
𝑜
𝑖 ,𝑃𝑖 ,𝛾

𝑀
𝑖

{ϝ} (31)

ubject to

ax
(

𝑇𝑀𝑖 , 𝑇 𝑜𝑖
)

≤ 𝐿𝑚𝑎𝑥, 1 ≤ 𝑖 ≤ 𝑁 (32)

1 − 𝑝𝑜𝑖)𝜆𝑖 < 𝜇
𝑀
𝑖 (1 − 𝑙𝑀𝑖), 1 ≤ 𝑖 ≤ 𝑁 (33)

𝑀
𝑖 (𝑓𝑀𝑖)3 1

𝜇𝑀𝑖 (1 − 𝑙𝑀𝑖) − (1 − 𝑝𝑜𝑖)𝜆𝑖
≤ �̂�𝑀𝑖 , 1 ≤ 𝑖 ≤ 𝑁 (34)

𝜆𝑆𝐵𝑆𝑝 < 𝑢𝑆𝐵𝑆𝑐 (35)

𝜆𝑆𝐵𝑆𝑝 < 𝑢𝑆𝐵𝑆𝑏 (36)
𝑁
∑

𝑖=1
𝜃𝑖𝜆𝑖𝑝

𝑜
𝑖𝜓

𝑆𝐵𝑆𝛼𝑖 ≤ �̂� (37)

𝑁
∑

𝑖=1
𝜃𝑖𝜆𝑖𝑝

𝑜
𝑖𝜓

𝑆𝐵𝑆𝑔𝑖 ≤ �̂� (38)

𝑁
∑

𝑖=1
𝑘𝑆𝐵𝑆 (𝑓𝑆𝐵𝑆)3(𝑇 𝑆𝐵𝑆𝑤𝑎𝑖𝑡 + 𝑇 𝑆𝐵𝑆𝑏) ≤ �̂�𝑆𝐵𝑆 (39)

(𝑁
∑

𝑖=1
𝜆𝑖𝑝

𝑜
𝑖

)

− 𝜆𝑆𝐵𝑆𝑝 < 𝑢𝐶𝑏 (40)

0 < 𝑃𝑖 < 𝑃𝑚𝑎𝑥𝑖 (41)

0 ≤ 𝑝𝑜𝑖 ≤ 1 (42)

0 ≤ 𝛾𝑀𝑖 ≤ 1 (43)
𝑁
∑

𝑖=1
𝛾𝑀𝑖 = 1 (44)

4. Genetic Simulated-annealing-based Particle swarm optimiza-
tion (GSP)

The aforementioned offloading scenario designs the objective func-
tion and its constraints. We aim to yield the optimal values of decision
variables (ratio of tasks offloaded by MDs, power of transmitting data
from MDs to SBS, and proportion of bandwidth allocated to MDs in
the channel between them and SBS) to yield our offloading strategy.
The final offloading strategy minimizes the total energy consumption.
Given the constrained optimization problem (P), our proposed solution
algorithm is given as follows.

ϝ is nonlinear in terms of 𝑃 𝑜𝑖 , 𝑃𝑖, and 𝛾𝑀𝑖 . Thus, it is a constrained
nonlinear optimization problem. To process the aforementioned con-
straints, we adopt a mechanism of penalty function (Panda & Pani,
2016) to transform all constraints into the penalty. P is transformed
into an unconstrained problem, i.e.,

𝐌𝐢𝐧
{

𝜙 =
∞
℧ + 𝜙

}

(45)
6

𝒙 n
where 𝒙 denotes a vector of 𝑃 𝑜𝑖 , 𝑃𝑖, and 𝛾𝑀𝑖 .

𝜙 is an augmented objective and
∞
 is a large and positive constant.

℧ denotes the sum of all penalties, i.e.,

℧ =
N≠
∑

𝑝=1
(max{0,−𝑔𝑝(𝒙)})

0
𝛾1 +

N=
∑

𝑞=1

|

|

|

ℎ𝑞(𝒙)
|

|

|

0
𝛾2 (46)

In (46), N≠ and N= are numbers of inequality and equality con-
traints.

0
𝛾1 and

0
𝛾2 denote two positive numbers. An inequality con-

traint 𝑝 is converted into 𝑔𝑝(𝒙) ≥ 0. The penalty of 𝑝 is

max{0,−𝑔𝑝(𝒙)})
0
𝛾1 if it is not satisfied, and it is zero otherwise. Sim-

larly, an equality constraint 𝑞 is converted into ℎ𝑞(𝒙) = 0. The penalty

f 𝑞 is |

|

|

ℎ𝑞(𝒙)
|

|

|

0
𝛾2 if it is not satisfied, and 0 otherwise. For instance, (36)

s transformed into 𝑢𝑆𝐵𝑆𝑏 −𝜆𝑆𝐵𝑆𝑝 > 0, and the penalty is (max{0,−(𝑢𝑆𝐵𝑆𝑏 −
𝑆𝐵𝑆
𝑝)})

0
𝛾1 . Then, an unconstrained problem is yielded.

Some typical algorithms are available to solve this problem. They
ften require that optimization problems must have specific mathe-
atical properties. For instance, they demand first and second-order
erivatives. To avoid such aforementioned disadvantages, existing stud-
es use meta-heuristic algorithms because of their significant merits,
.g., fast convergence, easy implementation, strong robustness, and
bility to handle nonlinearities and discontinuities. In reality, they have
een adopted to address various real-life problems in different areas.
ach meta-heuristic optimization algorithm may have to bear some
isadvantages. For instance, although the convergence of PSO is fast,
t often easily falls into local optima when solving constrained prob-
ems (Bi, Zhai et al., 2023). SA owns a rule of Metropolis acceptance,
llowing directions to worsen search values (Tsai et al., 2020). Thus,
A can escape from local optima and find global ones by setting the
ptimal temperature cooling rate. However, SA suffers from very slow
onvergence (Vincent et al., 2017). To avoid such drawbacks, we design
hybrid and improved algorithm called GSP. Since GA provides genetic
perations and has high individual diversity, it improves both search
fficiency and accuracy.

In PSO, each particle changes its position and velocity with its
earning experience and the current population (Zeng et al., 2020). |X|
s the population size, 𝐱𝑖 is a position of particle 𝑖 (𝑖 = 1, 2,…, |X|), and
𝑖 is a velocity of particle 𝑖. N𝐷 denotes the dimension of each position.
𝑜
𝑖 is stored in the first 𝑁 entries, 𝑃𝑖 is stored in the next 𝑁 entries, 𝛾𝑀𝑖
s stored in the next 𝑁 entries, and 𝜙 is stored in the last entry. Thus,
𝐷 = 3𝑁 + 1. �̌�𝑖 is a locally best position of particle 𝑖. �̂� is a globally
est position. Then, 𝐱𝑖 and 𝑣𝑖 are updated as:

𝑖 = 𝐱𝑖 + 𝑣𝑖 (47)

𝑖 = 𝜃1⋅𝑣𝑖 + �̌�2𝑤1
(

�̌�𝑖 − 𝐱𝑖
)

+ �̂�2𝑤2
(

�̂� − 𝐱𝑖
)

(48)

here 𝑤1 and 𝑤2 denote two random numbers in (0, 1). 𝜃1 denotes
n inertia weight. �̂�2 and �̌�2 are social and individual acceleration
onstants, reflecting the influence of �̌�𝑖 and �̂�.

The optimization process of PSO oscillates if �̌�𝑖 and �̂� differ signifi-
antly. Genetic operations produce superior particles for enhancing the
lobal search ability. Therefore, �́�𝑖 denotes a position of a superior one
or particle 𝑖. Specifically, �́�𝑖 combines �̌�𝑖 and �̂�, i.e.,

́ 𝑖 =
�̌�2𝑤1�̌�𝑖 + �̂�2𝑤2�̂�
�̌�2𝑤1 + �̂�2𝑤2

(49)

Then, 𝑣𝑖 and 𝐱𝑖 are updated as:

𝑣𝑖 = 𝜃1⋅𝑣𝑖 + 𝜃3𝑤3
(

�́�𝑖 − 𝐱𝑖
)

(50)

𝑖 = 𝐱𝑖 + 𝑣𝑖 (51)

here 𝜃3 denotes an acceleration constant, and 𝑤3 is a vector of random
umbers in (0, 1).

Expert Systems With Applications 250 (2024) 123896H. Yuan et al.

A
𝜃
F

o
i

𝑣

𝐱

e
o
n

w
i

1
1
1
1
1
1
1
1

v

Furthermore, �̌�𝑖 and �̂� are encoded by using a binary encoding
method. 𝜃5 denotes the possibility of mutation. The single-point op-
eration of crossover is performed on �̌�𝑖 and �̂� to yield offspring �̆�𝑖.

fterward, the mutation is performed on �̆�𝑖 with a given probability
5, thereby reducing the possibility of falling into locally best positions.
inally, the selection is performed to select �̆�𝑖 or �́�𝑖.

If 𝜙(�̆�𝑖) ≤ 𝜙(�́�𝑖), �̆�𝑖 is selected as a superior one for particle 𝑖;
therwise, �́�𝑖 is selected. 𝐱𝑔𝑖 and 𝐱𝑔+1𝑖 are positions of particle 𝑖 in
terations 𝑔 and 𝑔 + 1. 𝐱𝑔+1𝑖 is updated as:

𝑖 = 𝜃1⋅𝑣𝑖 + 𝜃3⋅𝑤3⋅
(

�́�𝑖 − 𝐱𝑔𝑖
)

(52)

𝑔+1
𝑖 = 𝐱𝑔𝑖 + 𝑣𝑖 (53)

Moreover, a Metropolis acceptance rule of SA is adopted in GSP to
nhance the diversity of the population, thereby helping it to step out
f the local optima. It allows accepting the inferior solutions for the
ext iteration. Specifically, if 𝜙(𝐱𝑔+1𝑖) ≤ 𝜙(𝐱𝑔𝑖), 𝐱

𝑔+1
𝑖 is used; otherwise,

it is conditionally used if

𝑒

(

𝜙
(

𝐱𝑔𝑖
)

−𝜙
(

𝐱𝑔+1𝑖

)

𝜃𝑔4

)

> 𝑤4 (54)

here 𝑤4 and 𝜃𝑔4 denote a random number in (0,1) and the temperature
n iteration 𝑔.
Algorithm 1 GSP
1: Initialize velocities and positions of particles
2: Change 𝜙 of with (45)
3: Change �̌�𝑖 and �̂�
4: Initialize 𝜃5, 𝜃14 , 𝜃7, �̌�2, �̂�2, 𝜃3, �̂�1, �̂�, �̌�1, and |X|
5: 𝑔 ← 1
6: while 𝑔 ≤ �̂� do
7: Conduct crossover on �̌�𝑖 and �̂� to produce offspring �̆�𝑖
8: Conduct mutation on �̆�𝑖 with a probability of 𝜃5
9: Conduct selection to select �̆�𝑖 or �́�𝑖
0: Change velocities and positions with (52),(53) and (54)
1: Calculate 𝜙 for each particle with (45)
2: Change �̌�𝑖 and �̂�
3: 𝜃𝑔4 ← 𝜃𝑔4 ⋅𝜃7
4: 𝜃1 ← (�̂�1 − �̌�1)⋅

�̂�−𝑔
�̂� + �̌�1

5: 𝑔 ← 𝑔 + 1
6: end while
7: return �̂�

Algorithm 1 gives GSP’s details. The line 1 randomly initializes
elocities and positions of particles in PSO. Line 2 changes 𝜙 with (45).

Line 3 changes �̌�𝑖 and �̂�. 𝜃14 denotes the starting temperature, and 𝜃7
denotes its temperature cooling rate. Line 4 initializes 𝜃5, 𝜃14 , 𝜃7, �̌�2, �̂�2,
𝜃3, �̂�1, �̌�1, �̂�, and |X|. �̂� is the total number of iterations. The loop of
while terminates when 𝑔 > �̂� in Line 6. Line 7 conducts the crossover
on �̌�𝑖 and �̂� to yield offspring �̆�𝑖. Line 8 conducts the mutation on �̆�𝑖 with
a probability of 𝜃5. Line 9 conducts the selection to select �̆�𝑖 or �́�𝑖 for
particle 𝑖. Line 10 updates velocities and positions with (52), (53) and
(54). Line 11 updates 𝜙 for each particle 𝑖 with (45). Line 12 changes �̌�𝑖
and �̂�. Line 13 reduces the temperature by 𝜃7. �̂�1 and �̌�1 are upper and
lower bounds of 𝜃1. Line 14 linearly decreases 𝜃1 from �̂�1 to �̌�1. Line 17
returns the final �̂�.

We give the time complexity of Algorithm 1. The computation cost
is caused by the loop of while, which terminates when the number
of iterations reaches �̂�. In Lines 7–15, GSP’s time complexity in an
iteration is (|X|N𝐷) where N𝐷 = 3𝑁 + 1. Thus, the time complexity
in an iteration is (|X|(3𝑁 + 1)). Consequently, GSP’s overall time
complexity is (�̂�|X|𝑁).
7

Table 2
Parameter setting of our model.

Parameter Value

𝑓𝑀𝑖 [3 × 108, 3.5 × 108] cycles/s
𝑟𝑀 0.005 $/kWh
𝜆𝑖 3 MIPS
𝑘𝑀𝑖 10−26

𝜇𝑀𝑖 5 MIPS
𝑙𝑀𝑖 0.3
ℎ𝑖 0.98
𝜃𝑖 3.2 × 106 bits
�̂�𝑀
𝑖 2 J

𝑃 𝑚𝑎𝑥
𝑖 0.1 W
𝛼𝑖 40
𝑔𝑖 0.06
𝑑𝑖 50 m
𝑟𝑆𝐵𝑆 0.001
𝜆𝑆𝐵𝑆𝑚𝑎𝑥 8 MIPS
𝑢𝑆𝐵𝑆 10 MIPS
𝑢𝑆𝐵𝑆𝑏 15 MIPS
�̂� 14 × 109 cycles/s
�̂� 2048 GB
�̂�𝑆𝐵𝑆 3 J
𝑘𝑆𝐵𝑆 10−27

𝑆 64
𝑓𝑆𝐵𝑆 8 × 108 cycles/s
𝑊 10 MHZ
𝑣 4
𝑐 3
𝜔0 1.6 × 10−11

𝑟𝐶 0.003 $
𝑢𝐶𝑏 26 MIPS
𝑢𝐶 26 MIPS

Table 3
Parameter setting of GSP.

Parameter Value

�̌�2 0.5
�̂�2 0.5
𝜃3 1.496
�̂�1 0.95
�̌�1 0.4
𝜃5 0.01
𝜃14 108

𝜃7 0.95
�̂� 103

|X| 100
∞
 1010
0
𝛾1 2
0
𝛾2 1

5. Performance evaluation

We evaluate GSP with realistic tasks from Google data centers for
one day.1 Input data (bits) for MDs are sampled every five minutes. GSP
is implemented in MATLAB 2021, running in a server with an Intel(R)
Core(TM) i7-10700F CPU with 2.90 GHz and 16-GB memory.

5.1. Parameter setting

According to Wang et al. (2016) and Yuan, Bi et al. (2022), the
setting of parameters for MDs, SBS, and CDC is given in Table 2. In
addition, similar to studies in Gao et al. (2019), a design approach
named Taguchi is used to determine the best setting of parameters of
GSP in Table 3.

1 https://github.com/google/cluster-data (accessed on March 19, 2021).

https://github.com/google/cluster-data

Expert Systems With Applications 250 (2024) 123896H. Yuan et al.

M
d

Fig. 2. Total cost and its corresponding penalty w.r.t. varying 𝑁 .
Fig. 3. Total cost w.r.t varying 𝑁 and 𝜆𝑆𝐵𝑆𝑚𝑎𝑥 .
Fig. 4. Total cost w.r.t different 𝐿𝑚𝑎𝑥.
5.2. Experimental results

Fig. 2 shows the total system cost and its corresponding penalty
with respect to different 𝑁 . It is observed that given each number of

Ds, the penalty obtained by the proposed GSP is zero. Thus, Fig. 2
emonstrates the constraints in P are strictly met.

Fig. 3 illustrates the total cost with respect to different 𝑁 and 𝜆𝑆𝐵𝑆𝑚𝑎𝑥 .
It is shown that the total cost increases as 𝑁 becomes larger. In Fig. 3,
there is a point of inflection for each curve, which is marked as a
separate circle. After each inflection point, the total cost increases faster
with a bigger slope as 𝑁 increases. This is due to the limit of the task
execution rate of SBS, i.e., 𝜆𝑆𝐵𝑆𝑚𝑎𝑥 , is limited. For example, when 𝜆𝑆𝐵𝑆𝑚𝑎𝑥 =
6 tasks/s, more tasks are offloaded to CDC, thereby increasing the total
system cost.

Fig. 4 shows the total system cost in terms of varying 𝐿𝑚𝑎𝑥, which
means the response time limit of tasks in MDs. It can be observed
that when 𝐿𝑚𝑎𝑥 = 0.45 s, the total system cost of the system is much
larger than the cases given 𝐿𝑚𝑎𝑥 = 0.6, 0.75, or 0.9 s This is because
smaller 𝐿𝑚𝑎𝑥 requires that more tasks are offloaded to SBS and CDC,
8

thus increasing the total system cost.
Fig. 5. Total cost w.r.t different 𝑆 and 𝑑𝑖.

Fig. 5 shows the total system cost in terms of varying 𝑆 and 𝑑𝑖
when there are 16 MDs. It is shown that the total system cost increases
as 𝑑𝑖 becomes larger. Besides, it also shows that the total system cost
reduces as 𝑆 becomes larger. This is because the allocated bandwidth
for each MD increases as 𝑆 increases. Thus, the data transmission rate

Expert Systems With Applications 250 (2024) 123896H. Yuan et al.

b
(
d

t
c
r
t
t

Fig. 6. Cost of MDs w.r.t varying arriving rates.

Fig. 7. Cost of SBS w.r.t varying arriving rates.

Fig. 8. Cost of CDC w.r.t varying arriving rates.

etween each MD and SBS increases based on (9). Thus, following
5), the energy consumption of transmitting data from an MD to SBS
ecreases, which reduces the total system cost.

Figs. 6–8 illustrate the total system cost of MDs, SBS, and CDC in
erms of varying arriving rates. It can be observed that the total system
ost of MDs, SBS, and CDC all increase with the increase of arriving
ates. When 𝑁 = 5, the close SBS has sufficient processing capacity
o execute the tasks offloaded from MDs. As illustrated in Fig. 8, the
otal system cost of CDC is 0 when 𝑁 = 5. When 𝑁 = 10, there is an

inflection point when the arriving rate is 2.4 tasks/s. As illustrated in
Fig. 7, when the arriving rate is greater than 2.4 tasks/s, SBS cannot
execute all tasks offloaded to itself. Excessive tasks are offloaded to the
CDC for further processing. Moreover, it is illustrated in Fig. 8 that the
system cost of CDC increases linearly from 0 as the arriving rate reaches
2.4 tasks/s.

We further compare GSP with its typical benchmark algorithms,
including Genetic Learning-based Bat Algorithm (GLBA), SA-based PSO
(SAPSO), SA, and GA. The reasons are given as follows.

1. SAPSO (Yuan et al., 2017) integrates merits of SA and PSO.
It inherits quick convergence of PSO and strong global search
of SA. Consequently, the comparison between SAPSO and GSP
proves the convergence and search accuracy of GSP.
9

Fig. 9. Cost comparison of five algorithms w.r.t. varying numbers of MDs.

Fig. 10. Cost of GSP, SAPSO, GLBA, SA, and GA.

2. GLBA (Yue & Zhang, 2020) integrates genetic operations into
BA, thus inheriting GA’s high individual diversity and BA’s fast
convergence. Thus, their comparison proves the search accuracy
and convergence of GSP.

3. SA (Lyden & Haque, 2016) obtains global optima by selecting
the suitable temperature cooling rate. The comparison between
SA and GSP proves the global search for GSP.

4. GA (Metawa et al., 2017) has high individual diversity and
search accuracy. Thus, the comparison proves the search accu-
racy of GSP.

Fig. 9 illustrates the total system cost of five algorithms regarding
varying numbers of MDs. GSP’s cost is the smallest when 𝑁 changes
from 1 to 40. Besides, GSP’s cost increases linearly as 𝑁 increases.
Moreover, it is shown that the system cost of five algorithms achieves
similar results when there are five MDs. However, their cost starts to
increase after the case with 15 MDs. The cost of SA increases sharply
with 10 MDs, and GLBA increases after the case with 15 MDs. SAPSO
also shows a similar trend after the case with five MDs. GA’s cost is
the largest in terms of varying 𝑁 . Finally, GA, SAPSO, GLBA, and SA
achieve similar results with 40 MDs, and their cost are all higher than
that of GSP.

Moreover, Figs. 10 and 11 illustrate the cost and the penalty of
SAPSO, GSP, GLBA, SA, and GA, respectively, when there are 40 MDs.
It is illustrated that GSP has the lowest system cost (0.1553 $) after
1000 iterations. The final cost (0.1644 $) of SA is less than GA, GLBA,
and SAPSO, but it is still greater than GSP. Moreover, SA obtains
its best result after 820 iterations, which is much larger than GSP.
SAPSO, GLBA, and BA perform poorly when there are about 40 MDs.
Furthermore, it is shown in Fig. 11 that the penalty of SAPSO cannot
decrease to zero after 1000 iterations. It is worth noting that the penalty
of GA also fails to achieve the penalty of zero at the end, and it is 15 934
$ in Fig. 11 after 800 iterations. The result proves that GA and SAPSO

Expert Systems With Applications 250 (2024) 123896H. Yuan et al.

c
p
s
t

h
z
i
o
a
H
s
s
G
e
o
p

C
n
r
s
o
t
s
f
o
w
p
t
i
m
o
c
i
t
i
t

5

p
a
e
s
a
i

Fig. 11. Penalty of GSP, SAPSO, GLBA, SA, and GA.

annot generate satisfactory solutions meeting all the constraints. The
enalties of GSP, GLBA, and SA all reduce to zero at the end of the
earch processes. This proves that the solutions finally obtained by
hese algorithms are valid, and they strictly meet all constraints.

However, SA yields a satisfactory solution after 350 iterations. GLBA
as a similar iteration curve to GSP, but it also achieves the penalty of
ero after 400 iterations. GSP has a lower penalty at the beginning of
terations, and it achieves the penalty of zero after 100 iterations, which
utperforms other compared algorithms. As a result, the compared
lgorithms or other similar ones can also be used to solve the problem.
owever, it is hard for them to balance the search efficiency and the

earch accuracy. Specifically, SAPSO and GA cannot find the desired
olutions that meet the constraints after their required total iterations.
LBA and SA find their valid solutions but they have low search
fficiency. GSP has higher search efficiency and accuracy than state-
f-art metaheuristics, and it can better solve the considered offloading
roblem.

Furthermore, Figs. 12–15 illustrate the system cost of MDs, SBS,
DC, and the total system cost of the proposed strategy concerning the
umber of MDs. We also show the total system cost of local offloading,
andom offloading, and full offloading. It is shown that the proposed
trategy outperforms random and local computing concerning the cost
f MDs in Fig. 12. Its cost is higher than that of full offloading yet leads
o larger transmission latency. We aim to minimize the total system cost
uch that the latency requirement is strictly met. Thus, the latency of
ull offloading is not acceptable. Fig. 13 illustrates that the system cost
f SBS with the proposed offloading strategy is 0.008 $ after the case
ith 10 MDs. The reason is that the total tasks exceed the maximum
rocessing capacity of SBS, and excessive ones are further offloaded
o CDC. It is worth noting that the cost of SBS with local computing
s zero because no tasks are offloaded to SBS and that full offloading
aintains the maximum value. Fig. 14 shows that the proposed strategy

utperforms the random and full offloading with respect to the system
ost of CDC. It is higher than that with local computing that does not
nvolve CDC. Furthermore, Fig. 15 illustrates the total system cost with
he proposed offloading strategy with respect to the number of MDs. It
s observed that our offloading strategy yields the least cost among all
he strategies.

.3. Experimental discussion

In summary, Fig. 2 shows the system cost and its corresponding
enalty for different values of 𝑁 . It is shown that the penalties are
ll zero with different values of 𝑁 , which proves the robustness and
xcellent optimization ability of the GSP. Figs. 3–5 show the total
ystem cost with different experimental parameters (𝑁 , 𝜆𝑆𝐵𝑆𝑚𝑎𝑥 , 𝐿𝑚𝑎𝑥, 𝑆
nd 𝑑𝑖). The final cost shows an increasing trend as these variables
ncrease. This is because more MDs and higher task arriving rates
10
Fig. 12. Cost of MDs w.r.t. varying numbers of MDs.

Fig. 13. Cost of SBS w.r.t. varying numbers of MDs.

Fig. 14. Cost of CDC w.r.t. varying numbers of MDs.

Fig. 15. Total cost w.r.t. varying numbers of MDs.

Expert Systems With Applications 250 (2024) 123896H. Yuan et al.

a
a
t
r

6

t
h
a
c
d
m
s
o
o
(
i
c
(
t
t
c
t
t

w
e
S
i
b
m
n
f

B

B

B

B

C

C

D

F

G

G

J

bring more tasks that need to be executed, thus causing additional
energy consumption of the system. Moreover, larger 𝑑𝑖 causes more
communication energy between MD 𝑖 and the SBS. Furthermore, the
total cost of the system shows a linear increase as the above variables
increase, which proves that the proposed GSP can well handle the
computation offloading under different situations in this hybrid cloud
and edge systems. Moreover, Figs. 6–8 illustrate the cost of MDs, SBS,
and the CDC with different task arriving rates, respectively. They show
that as the task arriving rate increases, MDs cannot process these tasks
locally and then offload them to the SBS for execution. Moreover, when
the processing limit of the SBS is reached, SBS further offloads those ex-
ceeding tasks to the CDC. This demonstrates the process of computation
offloading and justifies the correctness of system modeling.

Figs. 9–11 compare our proposed GSP with four other metaheuris-
tic optimization algorithms (SAPSO, GLBA, SA, and GA). Specifically,
Fig. 9 illustrates that GSP achieves the lowest system cost with different
numbers of MDs compared to its peers. Figs. 10 and 11 show the
iteration curves and corresponding penalty curves of these algorithms.
They prove that GSP can obtain valid optimization results in a shorter
time. Moreover, Figs. 12–15 compare the proposed GSP with three
different offloading strategies (local computing, full offloading, and
random offloading). They show the cost of MDs, SBS, CDC, and the
system with different numbers of MDs. In addition, the cost of each
strategy shows an increasing trend as the number of MDs increases.
This is because more MDs in the system bring more pending tasks, and
they need additional energy to be processed. Finally, the total system
cost of GSP is the lowest among all strategies.

It is worth noting that the dimension of the proposed optimization
problem reaches one hundred. Moreover, the dimension of the problem
will continue to increase in the future as the number of users keeps
growing. In this case, we will further consider enhancing our GSP
by incorporating dimension reduction tools, e.g., principal component
nalysis, and autoencoder. In addition, we will also consider combining
surrogate model with our GSP. Surrogate models can replace a part of

rue models for the function evaluation, thereby saving computational
esources of GSP when solving high-dimensional problems.

. Conclusion

With the development of wireless communication and hardware
echnologies, mobile devices (MDs) can support various resource-
ungry applications. However, MDs only have constrained resources
nd energy. Current hybrid cloud and edge systems provide a partial
omputation offloading strategy for executing all tasks within their
elay bounds. Existing studies have not systematically studied the mini-
ization problem of the total cost of all tasks of complex applications in

uch hybrid systems. To fill the gap, this work designs an architecture
f a hybrid cloud and edge system, which consists of multiple MDs,
ne small base station (SBS), and one centralized cloud data center
CDC). A constrained total cost minimization problem for such a system
s established, which is addressed by a proposed optimization algorithm
alled Genetic Simulated-annealing-based Particle swarm optimization
GSP). It seamlessly combines the merits of genetic operations and
he global search ability of simulated annealing and jointly optimizes
he task offloading among MDs, SBS, and CDC, as well as a holistic
ollection of related factors. Real trace data-based experiments prove
hat GSP achieves less total system cost in fewer iterations than its
ypical peers.

In the future, we will explore further work in two directions. First,
e plan to study a more complicated architecture for hybrid cloud and
dge systems. Our current architecture comprises multiple MDs, one
BS, and one CDC. When one SBS is not powerful enough to support
ts nearby MDs, enabling sharing (Chen et al., 2021) among SBSs will
e beneficial. We plan to study a more complex hybrid system with
ultiple heterogeneous SBSs. Second, we plan to evaluate our GSP in
ewly emerging 5G/6G edge systems to study its broader applicability
11

urther.
CRediT authorship contribution statement

Haitao Yuan: Methodology, Investigation, Formal analysis, Writing
– original draft, Funding acquisition. Jing Bi: Resources, Supervision,
Project administration. Ziqi Wang: Software, Visualization, Investiga-
tion. Jinhong Yang: Data curation, Validation. Jia Zhang: Supervision,
Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Haitao Yuan and Jing Bi report financial support was provided by
National Natural Science Foundation of China. Haitao Yuan and Jing
Bi report financial support was provided by Beijing Natural Science
Foundation. Haitao Yuan reports financial support was provided by
Fundamental Research Funds for the Central Universities. If there
are other authors, they declare that they have no known competing
financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Ale, L., Zhang, N., Fang, X., Chen, X., Wu, S., & Li, L. (2021). Delay-aware and
energy-efficient computation offloading in mobile edge computing using deep rein-
forcement learning. IEEE Transactions on Cognitive Communications and Networking,
7, 881–892.

i, J., Wang, Z., Yuan, H., Qiao, J., Zhang, J., & Zhou, M. (2023). Self-adaptive
teaching-learning-based optimizer with improved RBF and sparse autoencoder for
complex optimization problems. In 2023 IEEE international conference on robotics
and automation (pp. 7966–7972).

i, J., Yuan, H., Duanmu, S., Zhou, M., & Abusorrah, A. (2021). Energy-optimized
partial computation offloading in mobile-edge computing with genetic simulated-
annealing-based particle swarm optimization. IEEE Internet of Things Journal, 8,
3774–3785.

Bi, J., Yuan, H., Zhang, K., & Zhou, M. (2022a). Energy-minimized partial computation
offloading for delay-sensitive applications in heterogeneous edge networks. IEEE
Transactions on Emerging Topics in Computing, 10, 1941–1954.

Bi, J., Yuan, H., Zhang, J., & Zhou, M. (2022b). Green energy forecast-based bi-objective
scheduling of tasks across distributed clouds. EEE Transactions on Sustainable
Computing, 7, 619–630.

i, J., Zhai, J., Yuan, H., Wang, Z., Qiao, J., Zhang, J., & Zhou, M. (2023). Multi-swarm
genetic gray wolf optimizer with embedded autoencoders for high-dimensional
expensive problems. In 2023 IEEE international conference on robotics and automation
(pp. 7265–7271).

ozorgchenani, A., Mashhadi, F., Tarchi, D., & Salinas, S. (2020). Multi-objective
computation sharing in energy and delay constrained mobile edge computing
environments. IEEE Transactions on Mobile Computing, 20, 2992–3005.

Casola, V., Benedictis, A., Martino, S., Mazzocca, N., & Starace, L. (2020). Security-
aware deployment optimization of cloud-edge systems in industrial IoT. IEEE
Internet of Things Journal, 8, 12724–12733.

Chen, S., Li, Q., Zhou, M., & Abusorrah, A. (2021). Recent advances in collaborative
scheduling of computing tasks in an edge computing paradigm. Sensors, 21, 1–22.

hetlur, V., & Dhillon, H. (2020). On the load distribution of vehicular users modeled
by a Poisson line Cox process. IEEE Wireless Commun. Lett., 9, 2121–2125.

ong, P., J., Zhou., Li, L., Cao, K., Wei, T., & Li, K. (2020). A survey of hierarchical
energy optimization for mobile edge computing: A perspective from end devices to
the cloud. ACM Computing Surveys, 53, 1–44.

ai, Y., Zhang, K., Maharjan, S., & Zhang, Y. (2020). Edge intelligence for energy-
efficient computation offloading and resource allocation in 5G beyond. IEEE
Transactions on Vehicular Technology, 69, 12175–12186.

eng, C., Han, P., Zhang, X., Zhang, Q., Zong, Y., Liu, Y., & Guo, L. (2022). Cost-
minimized computation offloading of online multifunction services in collaborative
edge-cloud networks. IEEE Transactions on Network and Service Management, 20,
292–304.

ao, S., Zhou, M., Wang, Y., Cheng, J., Yachi, H., & Wang, J. (2019). Dendritic neuron
model with effective learning algorithms for classification, approximation, and
prediction. IEEE Transactions on Neural Networks and Learning Systems, 30, 601–614.

ong, H., Li, R., An, J., Bai, Y., & Li, K. (2020). Quantitative modeling and analytical
calculation of anelasticity for a cyber-physical system. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 50, 4746–4761.

ia, M., Cao, J., & Liang, W. (2017). Optimal cloudlet placement and user to cloudlet
allocation in Wireless Metropolitan Area networks. IEEE Transactions on Cloud

Computing, 5, 725–737.

http://refhub.elsevier.com/S0957-4174(24)00762-0/sb1
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb1
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb1
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb1
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb1
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb1
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb1
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb2
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb2
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb2
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb2
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb2
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb2
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb2
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb3
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb3
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb3
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb3
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb3
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb3
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb3
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb4
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb4
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb4
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb4
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb4
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb5
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb5
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb5
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb5
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb5
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb6
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb6
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb6
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb6
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb6
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb6
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb6
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb7
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb7
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb7
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb7
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb7
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb8
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb8
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb8
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb8
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb8
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb9
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb9
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb9
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb10
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb10
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb10
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb11
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb11
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb11
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb11
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb11
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb12
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb12
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb12
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb12
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb12
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb13
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb13
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb13
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb13
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb13
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb13
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb13
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb14
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb14
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb14
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb14
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb14
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb15
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb15
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb15
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb15
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb15
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb16
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb16
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb16
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb16
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb16

Expert Systems With Applications 250 (2024) 123896H. Yuan et al.
Khayyat, M., Elgendy, I., Muthanna, A., Alshahrani, A., Alharbi, S., & Koucheryavy, A.
(2020). Advanced deep learning-based computational offloading for multilevel
vehicular edge-cloud computing networks. IEEE Access, 8, 137052–137062.

Li, X., Zhang, C., Gu, B., Yamori, K., & Tanaka, Y. (2019). Optimal pricing and service
selection in the mobile cloud architectures. IEEE Access, 7, 43564–43572.

Lin, C., Han, G., Qi, X., Guizani, M., & Shu, L. (2020). A distributed mobile fog
computing scheme for mobile delay-sensitive applications in SDN-enabled vehicular
networks. IEEE Transactions on Vehicular Technology, 69, 5481–5493.

Luo, Q., Li, C., Luan, T., & Shi, W. (2021). Minimizing the delay and cost of computation
offloading for vehicular edge computing. IEEE Transactions on Services Computing,
15, 2897–2909.

Lyden, S., & Haque, M. (2016). A simulated annealing global maximum power
point tracking approach for PV modules under partial shading conditions. IEEE
Transactions on Power Electronics, 31, 4171–4181.

Metawa, N., Hassan, M., & Elhoseny, M. (2017). Genetic algorithm based model for
optimizing bank lending decisions. Expert Systems with Applications, 80, 75–82.

Mu, S., Zhong, Z., & Zhao, D. (2020). Energy-efficient and delay-fair mo-
bile computation offloading. IEEE Transactions on Vehicular Technology, 69,
15746–15759.

Panda, A., & Pani, S. (2016). A symbiotic organisms search algorithm with adaptive
penalty function to solve multi-objective constrained optimization problems. Applied
Soft Computing, 46, 344–360.

Qi, S., Chen, J., Chen, P., Wen, P., Niu, X., & Xu, L. (2023). An efficient GAN-based
predictive framework for multivariate time series anomaly prediction in cloud data
centers. The Journal of Supercomputing, 80, 1268–1293.

Ren, J., Yu, G., He, Y., & Li, J. (2019). Collaborative cloud and edge computing for
latency minimization. IEEE Transactions on Vehicular Technology, 68, 5031–5044.

Sahni, Y., Cao, J., Yang, L., & Ji, Y. (2021). Multi-hop multi-task partial computation
offloading in collaborative edge computing. IEEE Transactions on Parallel and
Distributed Systems, 32, 1133–1145.

Saleem, U., Liu, Y., Jangsher, S., Tao, X., & Li, Y. (2020). Latency minimization for D2D-
enabled partial computation offloading in mobile edge computing. IEEE Transactions
on Vehicular Technology, 69, 4472–4486.

Silva, L., Magaia, A., Sousa, B., Kobusińska, A., Casimiro, A., Mavromoustakis, C.,
Mastorakis, G., & Albuquerque, V. (2021). Computing paradigms in emerging
vehicular environments: A review. IEEE/CAA Journal of Automatica Sinica, 8,
491–511.

Sohaib, M., Jeon, W., & W., Yu. (2023). Hybrid online–offline learning for task
offloading in mobile edge computing systems. IEEE Transactions on Wireless
Communication.

Su, Q., Zhang, Q., Li, W., Zhang, X., & Edge Collaboration (2024). Primal-dual-based
computation offloading method for energy-aware cloud. IEEE Transactions on Mobile
Computing, 23, 1534–1549.

Sun, Z., Sun, G., Liu, Y., Wang, J., & Cao, D. (2024). BARGAIN-MATCH: A game
theoretical approach for resource allocation and task offloading in vehicular edge
computing networks. IEEE Transactions on Mobile Computing, 23, 1655–1673.

Tsai, C., Hsia, C., Yang, S., Liu, S., & Fang, Z. (2020). Optimizing hyperparameters of
deep learning in predicting bus passengers based on simulated annealing. Applied
Soft Computing, 88, 11–22.

Vincent, F., Redi, A., Hidayat, Y., & Wibowo, O. (2017). A simulated annealing heuristic
for the hybrid vehicle routing problem. Applied Soft Computing, 53, 119–132.

Wang, Y., Sheng, X., Wang, L., & J., Li. (2016). Mobile-edge computing: Par-
tial computation offloading using dynamic voltage scaling. IEEE Transactions on
Communications, 64, 4268–4282.

Wang, W., Wang, Q., & Sohraby, K. (2017). Multimedia sensing as a service (MSaaS):
Exploring resource saving potentials of at cloud-edge IoT and fogs. IEEE Internet of
Things Journal, 4, 487–495.

Whaiduzzaman, M., Naveed, A., & Gani, A. (2018). MobiCoRE: Mobile device based
cloudlet resource enhancement for optimal task response. IEEE Transactions on
Services Computing, 11, 144–154.

Wu, Z., Li, L., Fei, Z., Zheng, Z., Li, L., & Z., Han. (2020). Energy-efficient robust com-
putation offloading for fog-IoT systems. IEEE Transactions on Vehicular Technology,
69, 4417–4425.

Xu, C., Liu, S., Zhang, C., Huang, Y., Lu, Z., & Yang, L. (2021). Multi-agent
reinforcement learning based distributed transmission in collaborative cloud-edge
systems. IEEE Transactions on Vehicular Technology, 70, 1658–1672.

Yu, Y., Gong, Y., Gong, S., & Guo, Y. (2020). Joint task offloading and resource
allocation in UAV-enabled mobile edge computing. IEEE Internet of Things Journal,
7, 3147–3159.

Yuan, H., Bi, J., & M., Zhou. (2022). Geography-aware task scheduling for profit max-
imization in distributed green data centers. IEEE Transactions on Cloud Computing,
10, 1864–1874.

Yuan, H., Bi, J., Tan, W., Zhou, M., Li, B., & Li, J. (2017). TTSA: An effective scheduling
approach for delay bounded tasks in hybrid clouds. IEEE Transactions on Cybernetics,
47, 3658–3668.
12
Yuan, H., Hu, Q., Wang, M., Bi, J., & Zhou, M. (2022). Cost-minimized user association
and partial offloading for dependent tasks in hybrid cloud–edge systems. In
2022 IEEE 18th international conference on automation science and engineering (pp.
1059–1064). Mexico City, Mexico.

Yuan, H., & Zhou, M. (2021). Profit-maximized collaborative computation offloading
and resource allocation in distributed cloud and edge computing systems. IEEE
Transactions on Automation Science and Engineering, 18, 1277–1287.

Yue, X., & Zhang, H. (2020). Modified hybrid bat algorithm with genetic crossover
operation and smart inertia weight for multilevel image segmentation. Applied Soft
Computing, 90, 1–43.

Zaw, C., Tran, M., Han, Z., & Hong, C. (2023). Radio and computing resource
allocation in co-located edge computing: A generalized Nash equilibrium model.
IEEE Transactions on Mobile Computing, 22, 2340–2352.

Zeng, N., Wang, Z., Liu, W., Zhang, H., Hone, K., & Liu, X. (2020). A dy-
namic neighborhood-based switching particle swarm optimization algorithm. IEEE
Transactions on Cybernetics, 52, 9290–9301.

Zhang, W., Elgendy, A., Hammad, M., Iliyasu, A., Du, X., Guizani, M., & Abd El-Latif, A.
(2021). Secure and optimized load balancing for multitier IoT and edge-cloud
computing systems. IEEE Internet of Things Journal, 8, 8119–8132.

Zhang, Y., Lan, X., Ren, J., & Cai, L. (2020). Efficient computing resource sharing for
mobile edge-cloud computing networks. IEEE/ACM Transactions on Networking, 28,
1227–1240.

Zhu, Q., Tang, H., Huang, J., & Hou, Y. (2021). Task scheduling for multi-cloud
computing subject to security and reliability constraints. IEEE/CAA Journal of
Automatica Sinica, 8, 848–865.

Haitao Yuan received the Ph.D. degree in Computer En-
gineering from New Jersey Institute of Technology (NJIT),
Newark, NJ, USA in 2020. He is currently an Associate
Professor at the School of Automation Science and Electrical
Engineering at Beihang University, Beijing, China. His re-
search interests include cloud computing, edge computing,
data centers, big data, machine learning, deep learning, and
optimization algorithms. He received the Chinese Govern-
ment Award for Outstanding Self-Financed Students Abroad,
the 2021 Hashimoto Prize from NJIT, and the Best Paper
Award in the 17th ICNSC. He serves as an associate editor
for Expert Systems with Applications.

Jing Bi received her B.S. and Ph.D. degrees in Computer
Science from Northeastern University, Shenyang, China, in
2003 and 2011, respectively. From 2013 to 2015, she was
a Post-doc researcher in the Department of Automation at
Tsinghua University, Beijing, China. From 2011 to 2013, she
was a research scientist at the Beijing Research Institute of
Electronic Engineering Technology in Beijing, China. From
2009 to 2010, she was a research assistant and participated
in research on cloud computing at IBM Research, Beijing,
China. From 2018 to 2019, she was a Visiting Research
Scholar with the Department of Electrical and Computer
Engineering, New Jersey Institute of Technology, Newark,
NJ, USA. She is a Professor at the Faculty of Informa-
tion Technology, School of Software Engineering, Beijing
University of Technology, Beijing, China. She has over
150 publications in international journals and conference
proceedings. Her research interests include distributed com-
puting, cloud computing, large-scale data analytics, machine
learning, and performance optimization. Dr. Bi received the
IBM Fellowship Award, the Best Paper Award at the 17th
IEEE International Conference on Networking, Sensing and
Control, and the First-Prize Progress Award of the Chinese
Institute of Simulation Science and Technology. She is now
an Associate Editor of IEEE Transactions on Systems Man
and Cybernetics: Systems. She is a senior member of the
IEEE.

Ziqi Wang is currently a Master’s student in the Faculty
of Information Technology, School of Software Engineering,
Beijing University of Technology, Beijing, China. Before
that, he received his B.E. degree in Internet of Things from
Beijing University of Technology in 2022. His research in-
terests include cloud computing, task scheduling, intelligent
optimization algorithms, and machine learning.

http://refhub.elsevier.com/S0957-4174(24)00762-0/sb17
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb17
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb17
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb17
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb17
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb18
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb18
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb18
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb19
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb19
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb19
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb19
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb19
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb20
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb20
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb20
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb20
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb20
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb21
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb21
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb21
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb21
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb21
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb22
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb22
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb22
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb23
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb23
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb23
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb23
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb23
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb24
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb24
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb24
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb24
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb24
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb25
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb25
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb25
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb25
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb25
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb26
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb26
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb26
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb27
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb27
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb27
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb27
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb27
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb28
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb28
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb28
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb28
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb28
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb29
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb29
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb29
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb29
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb29
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb29
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb29
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb30
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb30
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb30
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb30
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb30
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb31
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb31
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb31
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb31
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb31
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb32
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb32
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb32
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb32
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb32
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb33
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb33
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb33
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb33
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb33
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb34
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb34
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb34
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb35
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb35
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb35
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb35
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb35
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb36
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb36
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb36
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb36
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb36
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb37
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb37
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb37
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb37
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb37
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb38
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb38
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb38
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb38
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb38
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb39
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb39
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb39
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb39
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb39
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb40
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb40
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb40
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb40
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb40
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb41
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb41
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb41
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb41
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb41
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb42
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb42
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb42
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb42
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb42
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb43
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb43
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb43
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb43
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb43
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb43
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb43
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb44
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb44
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb44
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb44
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb44
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb45
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb45
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb45
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb45
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb45
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb46
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb46
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb46
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb46
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb46
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb47
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb47
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb47
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb47
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb47
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb48
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb48
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb48
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb48
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb48
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb49
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb49
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb49
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb49
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb49
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb50
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb50
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb50
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb50
http://refhub.elsevier.com/S0957-4174(24)00762-0/sb50

Expert Systems With Applications 250 (2024) 123896H. Yuan et al.
Jinhong Yang received the Ph.D. degree in Computer
Application Technology from Harbin Engineering Univer-
sity, Harbin, Heilongjiang, China in 2017. She is a Senior
Engineer with CSSC Systems Engineering Research Institute
in Beijing, China. Her research interests include machine
learning, data mining, knowledge reasoning, deep learning,
and intelligent optimization. She is a reviewer for Expert
Systems With Applications, International Journal of Machine
Learning and Cybernetics, etc.
13
Jia Zhang received the Ph.D. degree in computer science
from the University of Illinois at Chicago. She is currently
the Cruse C. and Marjorie F. Calahan Centennial Chair in
Engineering, Professor of Department of Computer Science
in the Lyle School of Engineering at Southern Methodist
University. Her research interests emphasize the application
of machine learning and information retrieval methods to
tackle data science infrastructure problems, with a recent
focus on scientific workflows, provenance mining, software
discovery, knowledge graph, and interdisciplinary applica-
tions of all of these interests in earth science. She is a senior
member of the IEEE.

	Partial and cost-minimized computation offloading in hybrid edge and cloud systems
	Introduction
	Related Work
	Energy-efficient task offloading
	Resource allocation in hybrid systems

	Problem Formulation
	Modeling of MDs
	Models of SBS and CDC
	Total cost
	Latency model
	Limited optimization problem

	Genetic Simulated-annealing-based Particle swarm optimization (GSP)
	Performance Evaluation
	Parameter Setting
	Experimental Results
	Experimental Discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

