
Spatial-Temporal Graph Fusion Transformer for
Long-term Water Quality Prediction

Ziqi Wang
Faculty of Information Technology

Beijing University of Technology
Beijing, China

ziqi wang@emails.bjut.edu.cn

Xiangxi Wu
Faculty of Information Technology

Beijing University of Technology
Beijing, China

Wuxiangxi7@emails.bjut.edu.cn

Xingyang Chang
Faculty of Information Technology

Beijing University of Technology
Beijing, China

David205x@emails.bjut.edu.cn

Renren Wu
South China Institute of Environmental Sciences

Ministry of Ecology and Environment
Guangzhou, China

wurenren@scies.org

Jing Bi
Faculty of Information Technology

Beijing University of Technology
Beijing, China

bijing@bjut.edu.cn

Junfei Qiao
Faculty of Information Technology

Beijing University of Technology
Beijing, China

junfeiq@bjut.edu.cn

requires prior knowledge and professional experience [2].
Moreover, these methods are often based on specific assump-
tions, e.g., water quality trends are linear and time is steady.
However, these assumptions may not be consistent with the
actual situation, which biases the prediction results.

Moreover, deep learning models, e.g., Back Propagation
Neural Networks [3], Recurrent Neural Networks [4], and
Convolutional Neural Networks [5] are suitable for water
quality prediction through the limited water quality informa-
tion. However, with the strengthening of socio-economic ties
between regions, the water environment is gradually showing
complex changes across regions. Moreover, multiple water
quality monitoring stations interact with each other, and the
data from them are not only affected by the historical values
but also by the values from the upstream monitoring stations,
which increases the complexity of the water quality prediction.

To solve the above problem, Graph Neural Networks (GNN)
[6] have shown powerful capabilities in dealing with complex
spatial sequence data [7]. Specifically, it can handle non-
Euclidean [8] data and represent water quality data in spatial
dimensions. Therefore, it can model the spatial relationship
between the location of each water quality monitoring station
as a graph structure [9]. However, due to the high complexity
of river networks and the uncertainty of spatial relationships,
inaccurate information used in defining the graph structure
results in an inaccurate graph. Therefore, a predefined graph
structure can only capture the local spatial information, and
it is difficult to adequately capture the spatial dependencies,
which affects the accuracy of the water quality prediction.

Based on the aforementioned analysis, this paper proposes a
water quality prediction model named Spatial-Temporal Graph
Fusion Transformer (STGFT). It integrates spatial attention
encoder (SAE) and temporal attention encoder (TAE) to
capture the spatial correlations and temporal characteristics
among different water quality monitoring stations, respec-
tively. Moreover, an adaptive dynamic adjacency matrix gen-
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Abstract—Over the past decades of rapid development, the 
global water pollution problem has become prominent. Accurate 
water quality prediction can detect the trend and anomaly 
of water quality changes in advance, thereby taking timely 
measures to avoid the occurrence of water quality problems. 
Traditional statistical methods for water quality prediction make 
it difficult t o c apture t he c omplex relationship b etween multiple 
variables and deep learning models make it difficult t o capture 
temporal dependence and spatial correlation of the water quality 
simultaneously. To solve the above problems, this work proposes 
an adaptive and dynamic graph fusion water quality prediction 
model based on a spatiotemporal attention mechanism named 
Spatial-Temporal Graph Fusion Transformer (STGFT). It in-
tegrates a spatial attention encoder (SAE), a temporal attention 
encoder (TAE), an adaptive dynamic adjacency matrix generator 
(ADMG), and a multi-graph fusion layer. Among them, SAE and 
TAE are adopted to capture the spatial correlations and temporal 
characteristics among different water quality monitoring stations, 
respectively. ADMG generates adaptive and dynamic adjacency 
matrices to reflect potential spatial relationships in the river net-
work. Experimental results with real-life water quality datasets 
demonstrate that STGFT outperforms current state-of-the-art 
models regarding prediction accuracy.

Index Terms—Spatiotemporal prediction, graph neural net-
works, attention mechanism.

I. INTRODUCTION
Nowadays, the deterioration of the water environment has

become one of the most important factors constraining the
sustainable development of society. To solve this problem,
water quality prediction methods [1] are designed to forecast
elemental values of the water environment in the future based
on past monitoring data. In this case, people can take timely
steps to address water pollution by accurately predicting future
water quality. There are two common methods of predicting
water quality, i.e., mechanism models and deep learning ones.
The former needs to select proper model parameters and
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erator (ADMG) is designed to utilize water quality spatial
and temporal characteristics to generate adaptive and dynamic
graphs to better reflect potential spatial relationships in the
river network, which allows STGFT not to be restricted by the
predefined graph structure. Experimental results based on three
real-world datasets show that the STGFT has high accuracy
in long-term water quality predictions.

II. PROPOSED METHODOLOGY

A. TAE

In water quality prediction tasks, historical data can affect
the future trend of change, and the monitoring values at
different time steps also have different impacts on the future
water quality change [10]. For example, when the rainfall is
excessive during the flood season, some pollutants enter the
river with the rainwater, leading to a significant deterioration of
the water quality, which in turn affects the subsequent changes
in it. In this case, to capture the correlation of water quality
elements between different time steps, this paper designs a
TAE that learns the temporal features of each water quality
monitoring station. The structure of the TAE is shown in Fig.
1. It is assumed that there are N water quality monitoring
stations and C water quality elements. It incorporates multiple
temporal attention layers and they are stacked together. Before
entering the first temporal attention layer, a feature embedding
vector X ′∈RN×T×D is generated based on the historical tem-
poral feature data X={X:,1, X:,2, X:,t, ..., X:,T }∈RN×T×C of
water quality monitoring stations, where R denotes a set of real
numbers, T denotes the time steps and D denotes the embed-
ding dimension. Then, according to (1) and (2), the positional
embedding (PE) [11] is obtained, where pos denotes the
position number and i denotes the current dimension number.
Moreover, PE(pos,2i) and PE(pos,2i+1) occur alternately and
they are obtained by the sin function (sin(·)) and the cos
function (cos(·)), respectively.

PE(pos,2i)=sin(pos/100002i/D) (1)

PE(pos,2i+1)=cos(pos/100002i/D) (2)

Normalization

Feed Forward Network
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Softmax

Scaled Dot Product
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Input

Temporal

Attention

Temporal

Attention
... Temporal
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Normalization

Fig. 1. Structure of the TAE.

Then, the input feature embedding is added to the positional
embedding, obtaining the input of the temporal attention
layer (X̂T=(X ′+PE)∈RN×T×D). In the temporal attention
layer, a self-attention mechanism [12] is adopted to extract
the internal correlation of the historical sequence data for
N sites in parallel. First, X̂T is mapped to three different
feature spaces, obtaining the query vector QT∈RN×T×D, key
vector KT∈RN×T×D, and the value vector VT∈RN×T×D.
Then, the scaled dot product is used to calculate the attention
intensity of each time step for other time steps on QT ,KT , VT ,
and the Softmax(·) is adopted for normalization, obtaining
the attention coefficient. Finally, the attention coefficient is
multiplied by VT , resulting in the output of the self-attention
mechanism (Attention(·)). The specific calculation process is
as follows:

QT=X̂TW
Q
T (3)

KT=X̂TW
K
T (4)

VT=X̂TW
V
T (5)

Attention (QT ,KT , VT )=Softmax

(
QTK

T
T√

dk

)
VT (6)

where WQ
T ,WK

T ,WV
T represent trainable parameter matrices,

dk represents a scaling factor, and it is the size of the first
dimension of the KT . Moreover, to capture the complex
features of the water quality, a multi-head attention mechanism
[13] is adopted in the temporal attention layer, i.e., training k
groups of self-attention mechanisms while later concatenating
the results and then remapping them back to the original
dimensions. The specific calculation process is as follows:

headT (i)=Attention
(
WQ

T (i)X̂T ,W
K
T (i)X̂T ,W

V
T (i)X̂T

)
(7)

MultiHead
(
X̂T

)
=∥ki=1 (headT (i))W

O
T (8)

where WQ
T (i),WK

T (i),WV
T (i) represents trainable parameter

matrices in the group i of self-attention mechanisms, and
WO

T is a trainable parameter matrix. Based on the idea of
residual connection [14], the output of the multi-head attention
mechanism (MultiHead(X̂T )) is added to X̂ . Then it passes
layer normalization [15] and a feed-forward neural network.
Finally, after normalization, the output result of the TAE
(OTAE) is obtained, i.e.,

Z=

{
X̂, i=0

O
(i−1)
TAE , otherwise

(9)

residual (i)=NL(MultiHead(Z)+Z) (10)

O
(i)
TAE=NL

(
W

(i)
T1

ReLU
(
W

(i)
T0

residual(i)
)
+residual(i)

)
(11)
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where residual(i) denotes the residual result of group i. NL(·)
represents layer normalization, and WT0 ,WT1 represent train-
able parameter matrices in the feed-forward neural network.
ReLU(·) means the activation function.

B. ADMG based on SAE

1) SAE: water quality monitoring sensors are widely dis-
tributed in rivers and lakes, and the water quality conditions
of the downstream are often affected by the upstream water
quality. To effectively mine the potential spatial features of
the water quality data, an SAE is proposed to capture the
correlation between each water quality monitoring station.
The structure of an SAE is shown in Fig. 2. Specifically, the
predefined adjacency matrix A and X ′ are used as the input of
the graph convolutional networks (GCN ) [16] layer, resulting
in a node embedding vector X̂S . Next, similar to the temporal
attention layer, parameter matrices WQ

S ,WK
S ,WV

S are adopted
to map the X̂S to three different feature spaces, resulting in
query vector, key vector, and value vector. Then, the scaled
dot product is used to calculate the attention coefficient. After
that, it performs a weighted summation on the value vector,
resulting in the output result of the self-attention mechanism.
Finally, the results pass through a feed-forward neural network
[17], obtaining the spatial attention AttentionS , i.e.,

X̂S=GCN (X ′, A) (12)

headS(i)=Attention
(
WQ

S (i)X̂S ,W
K
S (i)X̂S ,W

V
S (i)X̂S

)
(13)

MultiHead
(
X̂S

)
=∥ki=1 (headS(i))W

O
S (14)

AttentionS=WS1
ReLU

(
WS0

(
MultiHead

(
X̂S

)))
(15)

where WQ
S (i),WK

S (i),WV
S (i) represent trainable parameter

matrices in the group i of self-attention mechanisms. WO
S ,

WS1
, and WS0

represent parameter matrices. The above result
is used as an input feature of the GCN layer, thus extracting
spatial features. The specific calculation is shown in (16).
Specifically, this paper defines the output of the last stacked
spatial attention layer as OSAE .

OSAE=GCN(AttentionS , A) (16)

2) ADMG: Due to the high complexity and uncertainty of
spatial relationships in river networks, the predefined graph
structure cannot reflect the real spatial relationships. Therefore,
an ADMG is designed to generate adaptive and dynamic
adjacency matrices to mine the potential spatial dependencies
in river networks. As shown in Fig. 3, the ADMG first
uses a randomly initialized vector E∈RN×D to construct a
adaptive adjacency matrix Ap∈RN×N , By constructing it,
the deficiency of the A in representing node relationships
is compensated. Moreover, the Ap is fixed after training.
Furthermore, to construct a dynamic adjacency matrix, the

GCN

Feed Forward Network

Weight Sum

Softmax

Scaled Dot Product

Linear_Q Linear_K Linear_V

GCN

Position Embedding

Input

Spatial

Attention

Spatial

Attention
... Spatial

Attention

Spatial Attention Encoder

Fig. 2. Structure of the SAE.

Fig. 3. Structure of the ADMG.

OSAE is input into two parallel GCNs. They take the Ap and
the A as parameters, obtaining the dynamic feature mapping
Fd∈RN×T×D. This process is shown in (17) and (18), where
α and β are trainable parameters and they are used to weight
the output results of the two GCNs.

Ap=Softmax(ReLU(E · ET )) (17)

Fd=αGCN(OSAE , Ap)+βGCN(OSAE , A) (18)

Then, the Fd is converted into a two-dimensional matrix
(F ′

d∈R(D×T )×N ), and a linear transformation [18] is per-
formed on F ′

d to obtain a dynamic feature of a specific
dimension (F̃d∈RN×f ), where f denotes the number of linear
layers. Then, a dynamic embedded Ed∈RN×f is generated by
F̃d and E. This process is shown in (19) and (20).

F̃d=WfF
′
d (19)

Ed=ReLU(Tanh(F̃d ⊙ E)) (20)

where Wf∈Rf×(D×T ) represents trainable parameters in the
linear layer, Tanh(·) denotes the hyperbolic tangent function,
and ⊙ represents the Hadamard product. Finally, as shown in
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(21), Ed is multiplied by its transpose matrix ET
d to generate

a dynamic adjacency matrix Ad∈RN×N .

Ad=ReLU(Tanh(Ed · ET
d )) (21)

C. STGFT

Sections II-A and II-B describe the three main components
of the STGFT, i.e., TAE, SAE, and ADMG. This section
introduces the overall architecture of the STGFT.

Fig. 4. Overall framework of the STGFT.

Fig. 4 shows the architecture of the STGFT. The original
water quality sequence data X is input in parallel to TAE
and SAE, obtaining the temporal features OTAE that contains
the correlation between different time steps and the spatial
features OSAE that contains the correlation between different
nodes. Then OSAE is used as the input of ADMG and then
obtains the adaptive adjacency matrix Ap and the dynamic
adjacency matrix Ad. It is worth noting that Ad contains the
potential spatial features between nodes. Moreover, the multi-
graph fusion layer adopts three parallel GCN to fuse the Ap,
Ad, and A to generate node embeddings Flatent. The specific
process is shown in (22), where µ, ν, ω are parameters that are
adopted to weight the output results of the three GCN.

Flatent=µ(GCN(A,X))+ν(GCN(Ap, X))+ω(GCN(Ad, X))
(22)

After that, the Flatent is decoded using feed forward net-
works in the fully connected layer, predicting the water quality
sequence data Y in the future. The specific process is shown
as follows:

Y ′=FWt (Flatent )=W 1
t ReLU

(
W 0

t Flatent
)

(23)

Y=FWd (Y
′)=ReLU

(
Y ′W 0

d

)
W 1

d (24)

where FWt and FWd represent two feed forward networks,
FWt is used to transform the time dimension, converting
Flatent into a vector Y ′ of the target prediction length, FWd

is used to transform the water quality feature dimension,

converting Y ′ into a vector Y of the target feature dimension.
W 0

t , W 1
t , W 0

d , and W 1
d represent training parameter matrices.

III. EXPERIMENTS AND RESULTS ANALYSIS

A. Dataset Selection and Parameter Tuning

1) Dataset Description: Three real-world water quality
datasets are selected to verify the effectiveness of the STGFT,
i.e., Alabama, Beijing, and Beijing-Tianjin-Hebei (BTH)
datasets. Compared with the Alabama and Beijing datasets,
the BTH dataset contains more complex spatial relationships.
It includes 24 water quality monitoring stations in different
administrative divisions of the Beijing-Tianjin-Hebei region
in China. It is worth noting that this paper adopts the same
data preprocessing method for each dataset and each dataset
is divided into training, validation, and testing sets in the ratio
of 70%, 10%, and 20%. The input length of each sample is
40, and the output length is 10, i.e., 40 historical time steps
of data are used to predict 10 future time steps of data.

2) Parameter Tuning: To optimize the prediction perfor-
mance of the STGFT, some hyperparameters need to be manu-
ally adjusted and these hyperparameters include the number of
heads of the multi-head attention mechanism (H), embedding
dimension (E), GCN output dimension of the multi-graph
fusion layer (G). Therefore, this section selects the optimal
combination of parameters for STGFT through experiments.

The multi-head attention mechanism allows STGFT to
perform attention calculation in multiple subspaces in paral-
lel, allowing the model to concentrate on different subspace
information at the same time, thereby enhancing the model’s
generalization and representation abilities. An appropriate H
can help to improve the overall predictive performance of
the model. This paper sets H within [1,2,4]. Moreover, the
embedding dimension has an important impact on the model’s
representation ability and computational efficiency. A small
embedding dimension may lose information and reduce the
accuracy of predictions, while a large one may cause the model
to fall into local minima. Therefore, it is necessary to adjust
the E during the training process. This paper sets E within
[8,16,32]. Finally, the G is selected within [8,16,32,64]. Table
I shows the root mean square error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE) for
the predicted values of STGFT compared to the true values.
It is shown that STGFT achieves the best prediction accuracy
when H , E, and G are set to 2, 16, and 16, respectively.

B. Comparative Experiments

To verify the effectiveness of the STGFT, four baseline
models are adopted for comparative experiments, i.e., Atten-
tion Based Spatial-Temporal Graph Convolutional Networks
(ASTGCN) [19], Graph WaveNet [20], Spatial-Temporal Syn-
chronous Graph Convolutional Networks (STSGCN) [21],
Graph Attention WaveNet (GATWNet) [22]. Figs. 5 and 6
show the RMSE and MAE of STGFT and comparative models
on prediction steps from 1 to 10. Table II shows the prediction
error of STGFT and comparative models on Alabama, Beijing,
and BTH datasets. It is shown in Figs. 5 and 6 that STGFT
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TABLE I
PREDICTED EFFECTS OF STGFT WITH DIFFERENT SETS OF

HYPERPARAMETERS

(H , E, G) RMSE MAE MAPE
(1, 8, 8) 0.3249 0.2055 0.0595

(1, 16, 16) 0.3029 0.1856 0.0544
(1, 16, 32) 0.3091 0.1949 0.0635
(2, 8, 16) 0.3053 0.1835 0.0526
(2, 8, 16) 0.2732 0.1725 0.0553

(2, 16, 16) 0.2562 0.1512 0.0435
(2, 16, 32) 0.2865 0.1871 0.0603
(2, 16, 64) 0.0603 0.1861 0.0524
(2, 32, 64) 0.3085 0.1802 0.0505
(4, 16, 16) 0.2828 0.1740 0.0523
(4, 16, 32) 0.2958 0.1944 0.0603
(4, 32, 64) 0.3253 0.2054 0.2054

achieves the lowest RMSE and MAE on all prediction steps,
which proves the predictions obtained by the STGFT are
closer to the real values. Moreover, it is shown in Table II
that STGFT achieves the lowest prediction error on almost
all datasets compared with the baseline models. Its RMSE
on three datasets is reduced by an average of 10.63–19.74%,
1.69–23.97%, and 14.28–30.01% compared to the baseline
models, indicating that STGFT has higher accuracy and stabil-
ity on water quality predictions. Furthermore, compared with
experimental results on Alabama and Beijing datasets that are
on a smaller spatial scale, STGFT has a greater improvement
in prediction accuracy on the BTH dataset. This shows that
as spatial scale increases, STGFT can effectively capture time
features and potential spatial features in spatiotemporal water
quality data. Fig. 7 shows the prediction effect of STGFT and
comparative models by drawing the prediction curve of one
water quality monitoring station (Beiyang Bridge) in the BTH
dataset. It is shown that the prediction result of STGFT is
closer to the true value, proving that STGFT has advantages
in water quality spatial-temporal prediction.

In addition, this paper adopts the heat map to show the orig-
inal adjacency matrix, ADMG-generated adaptive adjacency
matrix, and ADMG-generated dynamic adjacency matrix com-
posed of 24 nodes in the BTH dataset to show the effectiveness
of ADMG. It is shown in Fig. 8 that the adaptive adjacency
matrix learns the main river network spatial relationships,
while the dynamic adjacency matrix generated based on input
features provides some potential spatial relationship as an
auxiliary. Therefore, the original adjacency matrix, adaptive
adjacency matrix, and dynamic adjacency matrix complement
each other in the spatial relationship. Finally, they are fused at
the multi-graph fusion layer, providing a spatially dependent
basis for aggregating spatiotemporal relationships.

IV. CONCLUSIONS

With the continuous growth of human activities and rapid
economic development, water environment problems becom-
ing increasingly prominent. The usage of water quality pre-
diction techniques can help anticipate water quality problems
and take timely action to avoid further deterioration. However,
the water environment presents the characteristics of cross-

Fig. 5. Comparison of multi-step prediction RMSE on the BTH dataset.

Fig. 6. Comparison of multi-step prediction MAE on the BTH dataset.

Fig. 7. Comparison of prediction results (Beiyang Bridge).

Fig. 8. Heat map of the adjacency matrices of the 24 nodes in the BTH
dataset.
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TABLE II
COMPARISON OF PREDICTIVE METRICS OF STGFT WITH OTHER BASELINE MODELS

Model Alabama Beijing BTH
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

ASTGCN 0.2010 0.1424 0.0185 0.5484 0.3525 0.0997 0.3302 0.1832 0.0482
Graph WaveNet 0.2072 0.1418 0.0187 0.5230 0.3176 0.0964 0.3661 0.2026 0.0537

STSGCN 0.2137 0.1430 0.0188 0.4376 0.2721 0.0781 0.3645 0.2094 0.0558
GATWNet 0.1919 0.1310 0.0164 0.4241 0.2565 0.0679 0.2989 0.1638 0.0436

STGFT 0.1715 0.1160 0.0152 0.4169 0.2526 0.0713 0.2562 0.1512 0.0435

regional and multi-site interactions. In that case, traditional
water quality prediction methods ignore the spatial correlation
of water quality changes, making it difficult to meet the de-
mand for accurate prediction of water quality. Moreover, they
focus on predefined graph structures to reflect the spatial fea-
tures that cannot capture potential spatial dependencies when
dealing with complex water quality data. To solve the above
problems, this paper proposes a novel water quality prediction
model named Spatial-Temporal Graph Fusion Transformer
(STGFT). It incorporates a spatial attention encoder and a
temporal attention encoder to capture the spatial correlations
and temporal characteristics among different water quality
monitoring stations. Moreover, an adaptive dynamic adjacency
matrix generator is designed to generate adaptive and dynamic
graphs to mine potential spatial dependencies in the river
network. Finally, the experimental results based on three real-
world datasets show that STGFT achieves higher accuracy in
long-term water quality prediction compared to its peers.

In our future work, we will further integrate meteorology
[23] and geography [24] into our STGFT to enhance the
robustness and reliability of the model. In addition, we intend
to use intelligent optimization and distributed computing to
accelerate the training and inference process of the model.
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