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Abstract—In recent years, the rapid advancement of

Large Models (LMs), including large language models,

visual foundation models, and multimodal LMs, has sig-

nificantly transformed various fields. These models are

evolving at a very fast pace, and their development has ben-

efited numerous industries considerably. However, inherent

architectural limitations in LMs, such as hallucinations

and challenges in error localization, restrict their potential.

Addressing these issues effectively is crucial for their

continued progress. This work provides an overview of

the evolution of LMs and highlights key challenges they

face, including high data and energy demands, catas-

trophic forgetting, limited reasoning capabilities, and fault

localization. Strategies to mitigate these challenges are

proposed, followed by a discussion on applying LMs in

smart industrial production. Harnessing the strengths of

LMs is expected to unlock new opportunities and drive

innovation across various industries.

Index Terms—Large models, neural networks, smart

industrial productions, artificial intelligence.

I. INTRODUCTION

Large models (LMs) are neural networks with ex-

tremely large-scale parameters, enabling them to tackle

tasks like content creation that were previously exclusive

to humans. They represent a major shift in artificial

intelligence (AI), marking its transition from a weak to a

strong state. The development of AI has occurred in three
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distinct generations. The first generation, emerging in the

1970s, centered on computational intelligence, focusing

on calculations and data storage. The second generation,

which gained prominence in the 2000s, emphasized

perceptive intelligence, enhancing recognition and in-

terpretation across various modalities. By the 2020s,

AI had progressed to cognitive intelligence, aimed at

understanding and responding to external environments

to support decision-making and task execution. LMs, as

a key element of this third generation, are designed to

analyze environmental inputs and make swift decisions,

thereby assisting humans effectively.

Numerous groundbreaking discoveries have driven the

evolution of LMs. The backpropagation algorithm [1]

solved the challenges in the training of neural networks.

The universal approximation theorem [2] demonstrated

that neural networks with sufficient neurons can ap-

proximate any continuous function. The Transformer

architecture [3] enhanced computational efficiency by

removing loop structures and supporting parallel process-

ing of long-term dependencies. Self-supervised learning

methods [4] enabled effective training on unlabeled data.

Additionally, the neural scaling law [5] revealed a pre-

dictable relationship between model performance, data

volume, parameters, and computational power, showing

that larger models and datasets improve results according

to a power-law scale. Fundamentally, LMs rely on pow-

erful algorithms and extensive computational resources

to learn complex probability distributions from massive
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datasets, making their remarkable capabilities possible.

In recent years, LMs have experienced significant

progress characterized by rapid growth in scale, en-

hanced capabilities, and broader application domains.

Early LMs like GPT-1 laid the groundwork for more ad-

vanced systems, culminating in multimodal LMs such as

GPT-4o. These developments have expanded the scope of

natural language processing and built a solid foundation

for future breakthroughs in AI. Despite these advance-

ments, challenges such as excessive power consumption

and catastrophic forgetting have become evident as LMs

are integrated into real-world applications. Overcoming

these obstacles is essential to further enhance LMs’

capabilities and unlock their full potential in practical

scenarios. This work examines the challenges associated

with applying LMs and proposes potential solutions. It

also explores the implementation of LMs in the industry.

II. PROBLEMS ENCOUNTERED WITH LMS

A. Catastrophic Forgetting

Catastrophic forgetting denotes that training LMs on

new tasks can lead to a decline in performance on previ-

ously learned tasks due to the model’s inability to retain

prior knowledge. This occurs because the model lacks an

effective mechanism to preserve the data and scenarios

encountered during earlier training phases. While fine-

tuning a model with domain-specific data can improve

its performance in a particular area, this often comes

at the cost of general performance, especially when

the new training data is significantly different from the

original. Over time, the model may struggle to accurately

interpret data that it initially trained on, resulting in poor

performance. In healthcare applications, an LM trained

in data related to a specific disease may perform well in

diagnosing that condition. However, if the model is later

fine-tuned with data on a different disease, it may lose

its ability to effectively diagnose the original condition.

This can reduce its reliability and accuracy, making it

less effective in clinical applications where it needs to

handle a broad range of medical scenarios.

B. Substantial Consumption of Resources

The number of parameters in a model directly affects

the amount of data required for training. As LMs increase

in size by reaching trillions of parameters, their demand

for computational resources and large-scale datasets

grows significantly. As illustrated in Fig. 1, AI’s energy

consumption continues to escalate. Both the quantity of

training data and the computational power necessary for

training scale proportionally with the number of model

parameters [6]. This creates a substantial challenge in

the training process, where expanding model capacity

by increasing parameters leads to a corresponding rise in

data and resource requirements. Additionally, by 2026,

it is anticipated that the supply of high-quality text data

may become insufficient, which would pose a major

obstacle to further development of LMs.

Fig. 1. Milestones in AI evolution and energy consumption trends.

Moreover, deep learning models require far more en-

ergy than human cognition. For instance, training a state-

of-the-art image recognition model can consume 11,000

kWh of electricity [7], significantly higher than a human

brain’s energy expenditure during similar cognitive tasks.

By comparison, the human brain operates on roughly 20

watts of power. This stark contrast in energy consump-

tion underscores the high resource demands of modern

AI systems, hindering the scalability and sustainability

of LMs. As a result, researchers are focusing on more

energy-efficient strategies such as model compression,

knowledge distillation, and hardware acceleration to ad-

dress these challenges.

C. Reasoning Deficits

The logical reasoning ability of LMs remains limited

due to their black-box nature, which prevents them from

employing structured problem-solving approaches. As
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a result, they struggle with complex tasks that require

advanced logical and numerical reasoning. The inverse

scale phenomenon [8] suggests that increasing the num-

ber of parameters and training data may not always lead

to improved performance, especially for tasks demanding

higher-order cognitive functions. These limitations high-

light that simply expanding the model does not address

all challenges, particularly those requiring sophisticated

reasoning. Moreover, the opacity of black-box models

complicates the understanding of their decision-making

processes and makes error correction difficult. To ad-

dress these issues, researchers are exploring more in-

terpretable machine learning approaches, such as rule-

based systems, attention mechanisms, and explainable

neural networks, which aim to provide clearer decision-

making pathways and verifiable reasoning processes.

These approaches are essential for enhancing the logical

reasoning capabilities of LMs.

While LMs have limited logical reasoning abilities,

they can still be applied at various stages of the opti-

mization process [9]. Initially, LMs can assist in problem

definition by transforming natural language descriptions

into structured forms compatible with optimization algo-

rithms. This helps clarify the problem, providing clear

and actionable inputs for subsequent optimization pro-

cesses. Furthermore, LMs can support the development

of optimization strategies by analyzing relevant literature

and technical documents, identifying suitable algorithmic

approaches, and suggesting optimal parameter settings.

This enables the extraction of key insights, guidelines,

and best practices, improving the efficiency of optimiza-

tion algorithms. Despite their reasoning limitations, these

applications demonstrate the significant potential of LMs

in addressing challenges in optimization.

D. Difficulty in Locating Errors

LMs often encounter difficulties in recognizing and

correcting errors due to their inherent lack of self-

awareness and limited capacity to understand the causes

of mistakes. Therefore, this limitation impedes their abil-

ity to address and rectify errors effectively. For example,

in processing tasks such as image captioning, LMs may

produce inaccurate captions due to incorrect interpre-

tations of visual data or biases in the training dataset.

Thus, without mechanisms to reflect upon and analyze

these errors, LMs cannot learn from them, hindering their

continuous improvement. This underscores the need to

develop more advanced error detection and correction

strategies that facilitate the accurate identification of

issues and prevent their recurrence. In addition, ensuring

that LMs are trained on diverse and unbiased datasets is

critical in mitigating errors at the outset. These limita-

tions restrict their practical application, as the reliability

and robustness of their outputs remain compromised.

Researchers have focused on creating sophisticated feed-

back loops and error analysis frameworks to address

these challenges. These efforts enable models to rec-

ognize errors, understand their underlying causes, and

implement targeted adjustments. Furthermore, integrat-

ing human oversight with automated learning processes

improves the model’s capacity for self-correction and

enhances its adaptability to new and complex situations.

This human-machine collaborative approach is essential

for improving the robustness and performance of LMs

in real-world applications.

E. Underlying Issues Behind LM Limitations

1) Challenges of Back-Propagation in Training LMs:

Back-propagation is the foundational mechanism used in

training LMs, aiming to minimize global errors by iter-

atively adjusting model parameters. While this approach

proves effective for optimizing performance on specific

tasks, it requires significant computational resources and

vast amounts of training data, making it susceptible to

overfitting and reducing the model’s overall flexibility

[10]. Furthermore, when LMs are introduced to new

tasks, they often need to start training from scratch,

which is inefficient and limits their long-term scalability.

This leads to a situation where task-specific parameters

are optimized at the cost of others. When new tasks are

incorporated, the back-propagation mechanism updates

all parameters, causing the model to “forget” previously

learned tasks. It underscores a major limitation of the

current paradigm, as it struggles with continuous learning

and adapting to new environments. Overcoming this

challenge is critical and requires improvements in train-

ing and optimization strategies to enhance generalization

and adaptability. These advancements would allow LMs

to handle various tasks and maintain consistent perfor-

mance over time.

During the reasoning, LMs generate answers based

on the questions and parameters learned during training.

The forward reasoning process, which involves all model

layers and parameters, requires significant computational

resources, leading to high energy consumption. A sin-

gle ChatGPT interaction is estimated to consume over
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a hundred times more energy than a Google search.

This stark difference highlights the substantial energy

overhead, which becomes a key concern in large-scale

deployments and scenarios involving frequent invoke.

2) Challenges in the Architecture and Scalability of

LMs: The architecture of current LMs is characterized

by a combination of various modules and a hierarchical

structure, which lacks clear functional definitions and

does not integrate mechanisms in a way that aligns

with human-understandable knowledge. This limitation

restricts the model’s ability to learn causal relationships,

which are essential for effective reasoning, thereby im-

peding performance on more complex tasks. Further-

more, due to limited interoperability, LMs struggle to

adapt to dynamic changes or new situations. Although

LMs can handle large volumes of simultaneous text

input, they face challenges when processing multimodal

data from many requests concurrently, such as audio or

video tokens. In such cases, the model may experience

delays, queuing, or even system crashes, resulting in

a suboptimal user experience. Consequently, there is a

need for optimization in both the processing capacity

and the architectural design of LMs to address these

multimodal input challenges. Enhancing the stability and

responsiveness of LMs under high-load conditions is also

crucial to ensure their reliability and scalability in real-

world applications.

III. DIRECTIONS IN PROBLEM-SOLVING EFFORTS

A. Integrating Neural Networks and Symbolic Systems

Neural networks excel in leveraging abundant prior

knowledge, demonstrating robust generalization and

adaptability. However, they face significant challenges,

including limited reasoning capabilities and low inter-

pretability. In contrast, symbolic systems offer strengths

such as composability, interpretability, and advanced

reasoning, yet are hindered by issues like combinatorial

explosion, sensitivity to noise, and limited generalization.

To address these limitations, researchers are exploring

hybrid paradigms that integrate the strengths of both

systems in a complementary manner.

Potential strategies for integrating neural networks and

symbolic systems include using symbolic frameworks

with neural networks as supporting modules, designing

neural networks to convert non-symbolic data into sym-

bolic formats for further processing, and training neural

networks with symbolic rule datasets to enhance reason-

ing capabilities. Additionally, symbolic rule-based struc-

tural templates can be embedded into neural architec-

tures to guide their operations, while iterative feedback

loops between neural networks and symbolic reasoning

modules enable dynamic exchanges that enhance over-

all functionality. These integration approaches seek to

leverage the complementary strengths of both paradigms,

aiming to bridge the gap between the generalization

power of neural networks and the interpretability and

precision of symbolic reasoning. By combining these

methodologies, LMs can better emulate human cognitive

processes, allowing them to handle complex reasoning

tasks with improved flexibility, accuracy, and decision-

making quality, ultimately broadening their potential

applications in diverse domains.

B. Optimizing Scalability and Decentralized Deployment

The advancement of AI fundamentally depends on

computing power and generalized algorithms, as these

elements far surpass the impact of individual skills in AI

systems [11]. Kaplan et al. [12] highlight the critical role

of the training scale, demonstrating that larger datasets

and more expansive models consistently yield superior

outcomes. The emergent properties [13] reveal that as

models and datasets increase, LMs can unexpectedly

acquire capabilities absent in smaller models. These

emergent abilities suggest that the complexity of be-

havior and functionality in LMs is intricately linked

to scale. To harness these properties, researchers focus

on optimizing large-scale model designs and employing

advanced optimization methods in the training process.

These strategies aim to maximize the potential of large-

scale systems while ensuring their reliability and effec-

tiveness in practical applications.

Only scaling up models is no longer a practical solu-

tion, particularly in scenarios requiring simultaneous ac-

cess by a large number of users. Centralized data centers

often face significant challenges in efficiently handling

such demands. Consequently, downsizing models and de-

centralizing computations to edge devices have emerged

as critical strategies. Through model optimization and

distributed computing, LMs can be effectively deployed

on edge devices such as smartphones, IoT devices, and

automotive systems. This approach enhances computa-

tional efficiency, strengthens data privacy, and reduces

latency by processing data closer to its source.

However, edge devices are constrained by limited

computational power, memory, storage, and energy ef-

ficiency, making the direct deployment of LMs chal-

lenging [14]. Addressing these limitations necessitates
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advancements in model optimization techniques to im-

prove performance while reducing resource consump-

tion. Model compression plays a vital role in this context.

Quantization lowers storage and computational demands

by converting high-precision floating-point representa-

tions to low-precision formats. Pruning reduces model

complexity by eliminating less significant parameters

[15]. Knowledge distillation further contributes by trans-

ferring the capabilities of a larger LM to a smaller one,

thereby significantly reducing the model size without

compromising performance [16]. Furthermore, cloud-

assisted mobile edge computing provides an effective

complementary solution. In this paradigm, edge devices

perform preliminary tasks such as preprocessing and

feature extraction while computationally intensive oper-

ations are offloaded to the cloud. This hybrid approach

reduces the computational burden on edge devices and

ensures the scalable and efficient deployment of LMs in

decentralized environments.

C. Referring to Human Memory Patterns

Brain science has heavily inspired neural network

development, forming the underlying structure of con-

temporary LMs. Many challenges associated with LMs

might be addressed by leveraging insights from how

the human brain processes knowledge. Memory is the

cornerstone of human intelligence, influencing cognitive

functions such as learning, abstraction, reasoning, and

association. These processes are shaped by three key

stages: encoding, storage, and retrieval. In the human

brain, encoding organizes and transforms external stimuli

into meaningful representations, with learning efficiency

closely tied to the strategies employed during this phase.

Multi-modal encoding and context-based association are

shown to enhance learning outcomes significantly. Stor-

age involves categorizing and retaining knowledge in

hierarchical long-term memory, enabling prior experi-

ence to facilitate future learning processes. Retrieval is

the process of accessing stored information. It strength-

ens memory consolidation, promotes abstract thinking,

and fosters reasoning by activating relevant associations.

These mechanisms are foundational to human intelli-

gence, as depicted in Fig. 2.

A critical difference between human cognition and

current LMs lies in the mechanism of reasoning and

memory utilization. In humans, reasoning leverages a

selective retrieval process that activates only a small,

relevant subset of long-term memory and converts it

into working memory. This efficient mechanism contrasts

sharply with LMs, which rely on simultaneously activat-

ing all parameters during reasoning, leading to significant

inefficiencies. The human brain has approximately 10
11

neurons and 10
15 synapses. It operates on merely 20-

–23 watts of energy, while an LM of comparable scale

may require up to 7.9×10
6 watts, highlighting the vast

energy disparity. Drawing inspiration from the human

brain’s retrieval and activation mechanisms offers poten-

tial pathways for enhancing machine intelligence. Devel-

oping models that mimic selective memory retrieval and

adaptive activation could address LMs’ heavy reliance

on data and computational power, paving the way for

more energy-efficient and intelligent systems.

Fig. 2. Structure and Function of Human Memory.

IV. LARGE MODEL’S APPLICATIONS IN INDUSTRY

LMs are used in intelligent industrial production,

streamlining numerous tasks and boosting overall effi-

ciency. These models facilitate industrial text genera-

tion and knowledge-based question-answering, enabling

the automated creation of production handover reports,

equipment inspection logs, and other essential docu-

mentation. Moreover, industrial multimodal LMs handle

tasks such as helmet detection and defective product rate

analysis, automating processes traditionally performed

manually and significantly enhancing worker produc-

tivity. The architecture of industrial LMs is illustrated

in Fig. 3. This framework processes various inputs, in-

cluding structured and unstructured mission plans, natu-

ral language instructions, and multimodal environmental

data. These inputs are directed to the model layer, where

a suitable LM is chosen based on the task requirements.
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To ensure reliability, the system may incorporate smaller

models, rule-based mechanisms, or prebuilt knowledge

bases to verify outputs and filter out erroneous instruc-

tions before execution. After task execution, the resulting

state is reintroduced into the system as updated environ-

mental data, enabling iterative improvement and respon-

siveness to dynamic industrial settings. This architecture

is designed to cater to diverse industrial applications by

integrating LMs into a feedback-driven loop. It optimizes

routine processes and ensures the adaptability and safety

of automated operations, making it a robust solution for

modern manufacturing environments.

Fig. 3. Applications of Large Models in Industrial Scenarios.

V. CONCLUSIONS

The rapid advancement of Large Models (LMs) is

transforming numerous industries by unlocking the po-

tential of data for enhanced decision-making support.

Despite their advantages, LMs still face challenges such

as high data and energy requirements, catastrophic for-

getting, and limited reasoning capabilities, which hinder

their broader application. This work reviews the evo-

lution of LMs, identifies their existing challenges, and

explores potential solutions. Furthermore, it discusses

the application of LMs in smart industrial systems. We

believe that LMs will be pivotal in shaping the future

and driving progress across various industries.
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