2025 IEEE 5th International Conference on Human-Machine Systems (ICHMS) | 979-8-3315-2164-6/25/$31.00 ©2025 IEEE | DOI: 10.1109/ICHMS65439.2025.11154190

2025 |IEEE 5th International Conference on Human-Machine Systems (ICHMS)

Challenges and Strategies in the Development of
Large Models

1* Ziqi Wang
College of Computer Science
Beijing University of Technology
Beijing, China
ziqi_wang @emails.bjut.edu.cn

2" Jing Bi
College of Computer Science
Beijing University of Technology
Beijing, China
bijing @bjut.edu.cn

3" Hailiang Zhao
School of Software Technology
Zhejiang University
Ningbo, China
hliangzhao @zju.edu.cn

4" MengChu Zhou
Department of Electrical and Computer Engineering
New Jersey Institute of Technology
Newark, USA
zhou@njit.edu

Abstract—In recent years, the rapid advancement of
Large Models (LMs), including large language models,
visual foundation models, and multimodal LMs, has sig-
nificantly transformed various fields. These models are
evolving at a very fast pace, and their development has ben-
efited numerous industries considerably. However, inherent
architectural limitations in LMs, such as hallucinations
and challenges in error localization, restrict their potential.
Addressing these issues effectively is crucial for their
continued progress. This work provides an overview of
the evolution of LMs and highlights key challenges they
face, including high data and energy demands, catas-
trophic forgetting, limited reasoning capabilities, and fault
localization. Strategies to mitigate these challenges are
proposed, followed by a discussion on applying LMs in
smart industrial production. Harnessing the strengths of
LMs is expected to unlock new opportunities and drive
innovation across various industries.

Index Terms—Large models, neural networks, smart
industrial productions, artificial intelligence.

I. INTRODUCTION

Large models (LMs) are neural networks with ex-
tremely large-scale parameters, enabling them to tackle
tasks like content creation that were previously exclusive
to humans. They represent a major shift in artificial
intelligence (AI), marking its transition from a weak to a
strong state. The development of Al has occurred in three
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distinct generations. The first generation, emerging in the
1970s, centered on computational intelligence, focusing
on calculations and data storage. The second generation,
which gained prominence in the 2000s, emphasized
perceptive intelligence, enhancing recognition and in-
terpretation across various modalities. By the 2020s,
Al had progressed to cognitive intelligence, aimed at
understanding and responding to external environments
to support decision-making and task execution. LMs, as
a key element of this third generation, are designed to
analyze environmental inputs and make swift decisions,
thereby assisting humans effectively.

Numerous groundbreaking discoveries have driven the
evolution of LMs. The backpropagation algorithm [1]
solved the challenges in the training of neural networks.
The universal approximation theorem [2] demonstrated
that neural networks with sufficient neurons can ap-
proximate any continuous function. The Transformer
architecture [3] enhanced computational efficiency by
removing loop structures and supporting parallel process-
ing of long-term dependencies. Self-supervised learning
methods [4] enabled effective training on unlabeled data.
Additionally, the neural scaling law [5] revealed a pre-
dictable relationship between model performance, data
volume, parameters, and computational power, showing
that larger models and datasets improve results according
to a power-law scale. Fundamentally, LMs rely on pow-
erful algorithms and extensive computational resources
to learn complex probability distributions from massive
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datasets, making their remarkable capabilities possible.
In recent years, LMs have experienced significant
progress characterized by rapid growth in scale, en-
hanced capabilities, and broader application domains.
Early LMs like GPT-1 laid the groundwork for more ad-
vanced systems, culminating in multimodal LMs such as
GPT-40. These developments have expanded the scope of
natural language processing and built a solid foundation
for future breakthroughs in AL Despite these advance-
ments, challenges such as excessive power consumption
and catastrophic forgetting have become evident as LMs
are integrated into real-world applications. Overcoming
these obstacles is essential to further enhance LMs’
capabilities and unlock their full potential in practical
scenarios. This work examines the challenges associated
with applying LMs and proposes potential solutions. It
also explores the implementation of LMs in the industry.

II. PROBLEMS ENCOUNTERED WITH LMS
A. Catastrophic Forgetting

Catastrophic forgetting denotes that training LMs on
new tasks can lead to a decline in performance on previ-
ously learned tasks due to the model’s inability to retain
prior knowledge. This occurs because the model lacks an
effective mechanism to preserve the data and scenarios
encountered during earlier training phases. While fine-
tuning a model with domain-specific data can improve
its performance in a particular area, this often comes
at the cost of general performance, especially when
the new training data is significantly different from the
original. Over time, the model may struggle to accurately
interpret data that it initially trained on, resulting in poor
performance. In healthcare applications, an LM trained
in data related to a specific disease may perform well in
diagnosing that condition. However, if the model is later
fine-tuned with data on a different disease, it may lose
its ability to effectively diagnose the original condition.
This can reduce its reliability and accuracy, making it
less effective in clinical applications where it needs to
handle a broad range of medical scenarios.

B. Substantial Consumption of Resources

The number of parameters in a model directly affects
the amount of data required for training. As LMs increase
in size by reaching trillions of parameters, their demand
for computational resources and large-scale datasets
grows significantly. As illustrated in Fig. 1, AI’s energy
consumption continues to escalate. Both the quantity of

training data and the computational power necessary for
training scale proportionally with the number of model
parameters [6]. This creates a substantial challenge in
the training process, where expanding model capacity
by increasing parameters leads to a corresponding rise in
data and resource requirements. Additionally, by 2026,
it is anticipated that the supply of high-quality text data
may become insufficient, which would pose a major
obstacle to further development of LMs.
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Fig. 1. Milestones in Al evolution and energy consumption trends.

Moreover, deep learning models require far more en-
ergy than human cognition. For instance, training a state-
of-the-art image recognition model can consume 11,000
kWh of electricity [7], significantly higher than a human
brain’s energy expenditure during similar cognitive tasks.
By comparison, the human brain operates on roughly 20
watts of power. This stark contrast in energy consump-
tion underscores the high resource demands of modern
Al systems, hindering the scalability and sustainability
of LMs. As a result, researchers are focusing on more
energy-efficient strategies such as model compression,
knowledge distillation, and hardware acceleration to ad-
dress these challenges.

C. Reasoning Deficits

The logical reasoning ability of LMs remains limited
due to their black-box nature, which prevents them from
employing structured problem-solving approaches. As
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a result, they struggle with complex tasks that require
advanced logical and numerical reasoning. The inverse
scale phenomenon [8] suggests that increasing the num-
ber of parameters and training data may not always lead
to improved performance, especially for tasks demanding
higher-order cognitive functions. These limitations high-
light that simply expanding the model does not address
all challenges, particularly those requiring sophisticated
reasoning. Moreover, the opacity of black-box models
complicates the understanding of their decision-making
processes and makes error correction difficult. To ad-
dress these issues, researchers are exploring more in-
terpretable machine learning approaches, such as rule-
based systems, attention mechanisms, and explainable
neural networks, which aim to provide clearer decision-
making pathways and verifiable reasoning processes.
These approaches are essential for enhancing the logical
reasoning capabilities of LMs.

While LMs have limited logical reasoning abilities,
they can still be applied at various stages of the opti-
mization process [9]. Initially, LMs can assist in problem
definition by transforming natural language descriptions
into structured forms compatible with optimization algo-
rithms. This helps clarify the problem, providing clear
and actionable inputs for subsequent optimization pro-
cesses. Furthermore, LMs can support the development
of optimization strategies by analyzing relevant literature
and technical documents, identifying suitable algorithmic
approaches, and suggesting optimal parameter settings.
This enables the extraction of key insights, guidelines,
and best practices, improving the efficiency of optimiza-
tion algorithms. Despite their reasoning limitations, these
applications demonstrate the significant potential of LMs
in addressing challenges in optimization.

D. Difficulty in Locating Errors

LMs often encounter difficulties in recognizing and
correcting errors due to their inherent lack of self-
awareness and limited capacity to understand the causes
of mistakes. Therefore, this limitation impedes their abil-
ity to address and rectify errors effectively. For example,
in processing tasks such as image captioning, LMs may
produce inaccurate captions due to incorrect interpre-
tations of visual data or biases in the training dataset.
Thus, without mechanisms to reflect upon and analyze
these errors, LMs cannot learn from them, hindering their
continuous improvement. This underscores the need to
develop more advanced error detection and correction

strategies that facilitate the accurate identification of
issues and prevent their recurrence. In addition, ensuring
that LMs are trained on diverse and unbiased datasets is
critical in mitigating errors at the outset. These limita-
tions restrict their practical application, as the reliability
and robustness of their outputs remain compromised.
Researchers have focused on creating sophisticated feed-
back loops and error analysis frameworks to address
these challenges. These efforts enable models to rec-
ognize errors, understand their underlying causes, and
implement targeted adjustments. Furthermore, integrat-
ing human oversight with automated learning processes
improves the model’s capacity for self-correction and
enhances its adaptability to new and complex situations.
This human-machine collaborative approach is essential
for improving the robustness and performance of LMs
in real-world applications.

E. Underlying Issues Behind LM Limitations

1) Challenges of Back-Propagation in Training LMs:
Back-propagation is the foundational mechanism used in
training LMs, aiming to minimize global errors by iter-
atively adjusting model parameters. While this approach
proves effective for optimizing performance on specific
tasks, it requires significant computational resources and
vast amounts of training data, making it susceptible to
overfitting and reducing the model’s overall flexibility
[10]. Furthermore, when LMs are introduced to new
tasks, they often need to start training from scratch,
which is inefficient and limits their long-term scalability.
This leads to a situation where task-specific parameters
are optimized at the cost of others. When new tasks are
incorporated, the back-propagation mechanism updates
all parameters, causing the model to “forget” previously
learned tasks. It underscores a major limitation of the
current paradigm, as it struggles with continuous learning
and adapting to new environments. Overcoming this
challenge is critical and requires improvements in train-
ing and optimization strategies to enhance generalization
and adaptability. These advancements would allow LMs
to handle various tasks and maintain consistent perfor-
mance over time.

During the reasoning, LMs generate answers based
on the questions and parameters learned during training.
The forward reasoning process, which involves all model
layers and parameters, requires significant computational
resources, leading to high energy consumption. A sin-
gle ChatGPT interaction is estimated to consume over
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a hundred times more energy than a Google search.
This stark difference highlights the substantial energy
overhead, which becomes a key concern in large-scale
deployments and scenarios involving frequent invoke.

2) Challenges in the Architecture and Scalability of
LMs: The architecture of current LMs is characterized
by a combination of various modules and a hierarchical
structure, which lacks clear functional definitions and
does not integrate mechanisms in a way that aligns
with human-understandable knowledge. This limitation
restricts the model’s ability to learn causal relationships,
which are essential for effective reasoning, thereby im-
peding performance on more complex tasks. Further-
more, due to limited interoperability, LMs struggle to
adapt to dynamic changes or new situations. Although
LMs can handle large volumes of simultaneous text
input, they face challenges when processing multimodal
data from many requests concurrently, such as audio or
video tokens. In such cases, the model may experience
delays, queuing, or even system crashes, resulting in
a suboptimal user experience. Consequently, there is a
need for optimization in both the processing capacity
and the architectural design of LMs to address these
multimodal input challenges. Enhancing the stability and
responsiveness of LMs under high-load conditions is also
crucial to ensure their reliability and scalability in real-
world applications.

III. DIRECTIONS IN PROBLEM-SOLVING EFFORTS
A. Integrating Neural Networks and Symbolic Systems

Neural networks excel in leveraging abundant prior
knowledge, demonstrating robust generalization and
adaptability. However, they face significant challenges,
including limited reasoning capabilities and low inter-
pretability. In contrast, symbolic systems offer strengths
such as composability, interpretability, and advanced
reasoning, yet are hindered by issues like combinatorial
explosion, sensitivity to noise, and limited generalization.
To address these limitations, researchers are exploring
hybrid paradigms that integrate the strengths of both
systems in a complementary manner.

Potential strategies for integrating neural networks and
symbolic systems include using symbolic frameworks
with neural networks as supporting modules, designing
neural networks to convert non-symbolic data into sym-
bolic formats for further processing, and training neural
networks with symbolic rule datasets to enhance reason-
ing capabilities. Additionally, symbolic rule-based struc-

tural templates can be embedded into neural architec-
tures to guide their operations, while iterative feedback
loops between neural networks and symbolic reasoning
modules enable dynamic exchanges that enhance over-
all functionality. These integration approaches seek to
leverage the complementary strengths of both paradigms,
aiming to bridge the gap between the generalization
power of neural networks and the interpretability and
precision of symbolic reasoning. By combining these
methodologies, LMs can better emulate human cognitive
processes, allowing them to handle complex reasoning
tasks with improved flexibility, accuracy, and decision-
making quality, ultimately broadening their potential
applications in diverse domains.

B. Optimizing Scalability and Decentralized Deployment

The advancement of Al fundamentally depends on
computing power and generalized algorithms, as these
elements far surpass the impact of individual skills in Al
systems [11]. Kaplan et al. [12] highlight the critical role
of the training scale, demonstrating that larger datasets
and more expansive models consistently yield superior
outcomes. The emergent properties [13] reveal that as
models and datasets increase, LMs can unexpectedly
acquire capabilities absent in smaller models. These
emergent abilities suggest that the complexity of be-
havior and functionality in LMs is intricately linked
to scale. To harness these properties, researchers focus
on optimizing large-scale model designs and employing
advanced optimization methods in the training process.
These strategies aim to maximize the potential of large-
scale systems while ensuring their reliability and effec-
tiveness in practical applications.

Only scaling up models is no longer a practical solu-
tion, particularly in scenarios requiring simultaneous ac-
cess by a large number of users. Centralized data centers
often face significant challenges in efficiently handling
such demands. Consequently, downsizing models and de-
centralizing computations to edge devices have emerged
as critical strategies. Through model optimization and
distributed computing, LMs can be effectively deployed
on edge devices such as smartphones, IoT devices, and
automotive systems. This approach enhances computa-
tional efficiency, strengthens data privacy, and reduces
latency by processing data closer to its source.

However, edge devices are constrained by limited
computational power, memory, storage, and energy ef-
ficiency, making the direct deployment of LMs chal-
lenging [14]. Addressing these limitations necessitates
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advancements in model optimization techniques to im-
prove performance while reducing resource consump-
tion. Model compression plays a vital role in this context.
Quantization lowers storage and computational demands
by converting high-precision floating-point representa-
tions to low-precision formats. Pruning reduces model
complexity by eliminating less significant parameters
[15]. Knowledge distillation further contributes by trans-
ferring the capabilities of a larger LM to a smaller one,
thereby significantly reducing the model size without
compromising performance [16]. Furthermore, cloud-
assisted mobile edge computing provides an effective
complementary solution. In this paradigm, edge devices
perform preliminary tasks such as preprocessing and
feature extraction while computationally intensive oper-
ations are offloaded to the cloud. This hybrid approach
reduces the computational burden on edge devices and
ensures the scalable and efficient deployment of LMs in
decentralized environments.

C. Referring to Human Memory Patterns

Brain science has heavily inspired neural network
development, forming the underlying structure of con-
temporary LMs. Many challenges associated with LMs
might be addressed by leveraging insights from how
the human brain processes knowledge. Memory is the
cornerstone of human intelligence, influencing cognitive
functions such as learning, abstraction, reasoning, and
association. These processes are shaped by three key
stages: encoding, storage, and retrieval. In the human
brain, encoding organizes and transforms external stimuli
into meaningful representations, with learning efficiency
closely tied to the strategies employed during this phase.
Multi-modal encoding and context-based association are
shown to enhance learning outcomes significantly. Stor-
age involves categorizing and retaining knowledge in
hierarchical long-term memory, enabling prior experi-
ence to facilitate future learning processes. Retrieval is
the process of accessing stored information. It strength-
ens memory consolidation, promotes abstract thinking,
and fosters reasoning by activating relevant associations.
These mechanisms are foundational to human intelli-
gence, as depicted in Fig. 2.

A critical difference between human cognition and
current LMs lies in the mechanism of reasoning and
memory utilization. In humans, reasoning leverages a
selective retrieval process that activates only a small,
relevant subset of long-term memory and converts it

into working memory. This efficient mechanism contrasts
sharply with LMs, which rely on simultaneously activat-
ing all parameters during reasoning, leading to significant
inefficiencies. The human brain has approximately 10!
neurons and 10' synapses. It operates on merely 20-
—23 watts of energy, while an LM of comparable scale
may require up to 7.9x 105 watts, highlighting the vast
energy disparity. Drawing inspiration from the human
brain’s retrieval and activation mechanisms offers poten-
tial pathways for enhancing machine intelligence. Devel-
oping models that mimic selective memory retrieval and
adaptive activation could address LMs’ heavy reliance
on data and computational power, paving the way for
more energy-efficient and intelligent systems.
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IV. LARGE MODEL’S APPLICATIONS IN INDUSTRY

LMs are used in intelligent industrial production,
streamlining numerous tasks and boosting overall effi-
ciency. These models facilitate industrial text genera-
tion and knowledge-based question-answering, enabling
the automated creation of production handover reports,
equipment inspection logs, and other essential docu-
mentation. Moreover, industrial multimodal LMs handle
tasks such as helmet detection and defective product rate
analysis, automating processes traditionally performed
manually and significantly enhancing worker produc-
tivity. The architecture of industrial LMs is illustrated
in Fig. 3. This framework processes various inputs, in-
cluding structured and unstructured mission plans, natu-
ral language instructions, and multimodal environmental
data. These inputs are directed to the model layer, where
a suitable LM is chosen based on the task requirements.
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To ensure reliability, the system may incorporate smaller
models, rule-based mechanisms, or prebuilt knowledge
bases to verify outputs and filter out erroneous instruc-
tions before execution. After task execution, the resulting
state is reintroduced into the system as updated environ-
mental data, enabling iterative improvement and respon-
siveness to dynamic industrial settings. This architecture
is designed to cater to diverse industrial applications by
integrating LMs into a feedback-driven loop. It optimizes
routine processes and ensures the adaptability and safety
of automated operations, making it a robust solution for
modern manufacturing environments.
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Fig. 3. Applications of Large Models in Industrial Scenarios.

V. CONCLUSIONS

The rapid advancement of Large Models (LMs) is
transforming numerous industries by unlocking the po-
tential of data for enhanced decision-making support.
Despite their advantages, LMs still face challenges such
as high data and energy requirements, catastrophic for-
getting, and limited reasoning capabilities, which hinder
their broader application. This work reviews the evo-
lution of LMs, identifies their existing challenges, and
explores potential solutions. Furthermore, it discusses
the application of LMs in smart industrial systems. We
believe that LMs will be pivotal in shaping the future
and driving progress across various industries.
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