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Abstract—In the production process of the process industry,
precise adjustment of working conditions presents a challenge
due to the complexity of processes and unknown disturbances.
Central control operators need to adjust setpoints based on
deviations in process parameters and monitor target values to
maintain system stability. However, many operating procedures
excessively rely on human experience, increasing the uncertainty
of the production process. In addition, the expert knowledge
is not fully embedded in accumulated operations, limiting its
potential in decision support. Therefore, data-driven modeling
of production processes is essential for developing industrial
expert systems to realize intelligent manufacturing. This work
proposes a work condition prediction framework based on an
Operation Mode Library (OML) to realize Working Condi-
tion Prediction (WCP), called for OML-WCP short. Taking
the cement rotary kiln adjustment process as an example, a
stable OML is constructed using Gaussian mixture clustering
technology. Experimental results with real-life operation data of
a cement plant reveal that the prediction accuracy of OML-WCP
outperforms the existing methods. Moreover, the continuous
accumulation of operating mode libraries can improve prediction
accuracy in practical applications.

Index Terms—Process industry production, operating mode
library, working condition prediction, process modeling.

I. INTRODUCTION

Process industrial production is influenced by various fac-
tors and requires real-time adjustment of main operating
parameters to maintain production efficiency [1]–[3]. The ever-
changing working conditions, including stemming from equip-
ment wear, variability in raw materials, and environmental
fluctuation, necessitate continuous monitoring and fine-tuning
by operators. The complex interplay among parameters, e.g.,
temperature, pressure, and flow rate alterations can signifi-
cantly impact product quality and throughput. Manual oper-
ation relies on subjective judgment and often lacks precision
and consistency, making it challenging to recall and update.

This work was supported by the Beijing Natural Science Foundation under
Grants L233005 and 4232049, the National Natural Science Foundation of
China under Grants 62173013 and 62473014, and in part by Beihang World
TOP University Cooperation Program.

To navigate these variable conditions and the intricate
coupling of parameters, the process industry must undertake
a profound analysis and forecast of production processes
to enhance efficiency and quality. Traditional mechanism-
based analyses and reliance on expert knowledge have their
limitations. It is essential to achieve a harmonious balance
between output, fuel, air volume, and kiln speed in cement
production. However, these parameters fluctuate and require
operator intervention to stabilize the system. The calcination
process encompasses complex chemical reactions, complicat-
ing the accurate calculation of state parameters. In addition,
the calcination state and material fuel composition are uneven,
resulting in poor ventilation during feeding and unknown
disturbances that affect the stability of systems [4]. These
unknown disturbances must be inferred through subtle changes
in system parameters, where multiple monitoring variables
exhibit intricate relationships with controllable ones.

The prediction of working conditions in industrial processes
poses several challenges. Various studies utilize statistical
techniques to condense operating principles and predict situa-
tions, e.g., the auto-regressive moving average model and its
variants [5]. In addition, techniques that rely on multi-layer
perceptions, e.g., neural hierarchical interpolation [6], time-
series dense encoder [7], and time-series mixer [8] achieve
great prediction accuracy. Moreover, to discover abnormalities
in the data and prevent equipment breakdowns, researchers
employ machine learning methods, including statistical limi-
tations [9], isolation forest [10], and one-class support vector
machine [11], [12] to identify aberrant operating circum-
stances. However, these methods mainly depend on examining
individual data points, which makes it challenging to make
long-term time series predictions and accurately forecast fluc-
tuation intervals.

Deep learning methods [13] are widely adopted for predict-
ing working conditions. They depend on extensive amounts
of past data to train models that predict future operational cir-
cumstances. Transformer-based models [14], [15] are widely
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adopted because of their outstanding performance. However,
they have a significant memory demand and suffer from long
training times. One of the main difficulties in using machine
learning with working condition data is the absence of efficient
annotation methods. This makes it harder to forecast changes
in condition intervals without labeled data accurately and
increases computational complexity. Therefore, developing a
collection of operating patterns is an effective method for cor-
rectly forecasting working conditions in industrial processes.
Wu et al. [16] condense arsenic salt cobalt removal working
conditions into operating modes using extensive industrial
operation data. They derive the initial operating mode and
finalize the Operation Mode Library (OML) by analyzing
substantial industrial operating data. Zhu et al. [17] analyze
historical operating status data to identify critical indicators
for status judgment. The authors create an OML by clustering
the operating status. It can capture the subtle characteristics of
changes in working conditions more accurately, resulting in a
significant improvement in the accuracy and dependability of
predictions. However, some limitations remain, especially in
extracting working condition features. Future studies should
prioritize critical areas, including optimizing the construction
process of the operating mode library and enhancing the
accuracy of working condition classification and identification.

Based on the above analysis, this work takes the operation
status data of rotary kilns as the basis and constructs an
OML containing stable modes of operation status. Moreover,
the combination of operation parameters in different stable
modes is studied, accumulating control process knowledge by
recording its operation experts. Based on the expert control
experience in OML, the recognition and prediction of real-
time operating status are achieved. It can describe the stable
mode of system operation using Gaussian mixture clustering
technology. In the modeling process, data-driven methods are
adopted while incorporating expert knowledge and experience.
The interpretability of data information is considered in pa-
rameter selection and feature analysis to improve prediction
accuracy. By discerning distinct operational patterns, this OML
can furnish vital decision support for the reliable operation of
control systems within the process industry.

II. WORKING CONDITION PREDICTION (WCP)
A. Key Parameters Analysis

Correlation analysis and principal component analysis can
be employed to eliminate irrelevant and redundant attributes.
To mitigate the impact of varying magnitudes among differ-
ent variables, it is necessary to normalize the data. Several
association rule mining algorithms are developed to handle
datasets with varying magnitudes. Among these, the Apriori
algorithm, FP-Tree algorithm, Eclat algorithm, and grey as-
sociation analysis stand out as effective solutions [18]. The
Apriori algorithm is known for its ability to efficiently discover
frequent item sets and generate strong association rules, while
the FP-Tree algorithm enhances the performance of the Apriori
algorithm by compressing the dataset and reducing the number
of database scans required. The Eclat algorithm, on the other

hand, uses a different approach called vertical data format to
mine frequent item sets, making it suitable for large databases
with a high number of transactions. Grey association analysis
is useful for handling uncertainty and incomplete information
in our datasets.

Expert knowledge gathered from on-site surveys can be
integrated with the sample data characteristics to optimize
computing resources, thereby preventing the need for complex
correlation analysis of numerous parameters. Experiments
should discard rules that lack support from mechanistic rules.
Once the son and parent sequences have been identified,
Grey system theory can be employed to assess the level of
correlation between parameters by analyzing the geometric
similarity of the parameter change curves. It aligns more
closely with experimental data. The grey correlation analysis
is shown in Algorithm 1.

Algorithm 1 Grey Correlation Analysis
Input: Sample matrix (X(m,n)), reference sequence (Y(1,n)),
smoothing factor (λ)
Output: Grey relational degrees

1: Calculate the range (r) for each column based on the
reference sequence Y

2: for each row i in X do
3: Calculate the range (r′) for each column
4: Calculate the correlation coefficient

c(i,j)=(min{rj , r′i,j}/max{rj , r′i,j})+λ for column j.
5: Calculate the weight coefficient w(i,j)=1/((|rj −

r′i,j |/max{rj , r′i,j}) + λ)
6: Calculate the Grey Relational Degree ρi for the row as

the weighted average ρi=(Σw(i,j) × c(i,j))/n
7: Get each row’s Grey Relational Degree values
8: end for
9: Sort the Degree of each row

10: Return the sorted Degree

B. Feature Exaction from Observed Values

This work initially conducts on-site inspections of the pro-
duction site and incorporates the practical expertise of special-
ists. It reveals that operators primarily assess on-site working
conditions by observing variable changes. By utilizing this in-
formation, the specific values of the observed quantities can be
chosen to define and distinguish various operating conditions.
Meanwhile, the curve characteristics of the observed quantities
are indeed influenced by changes in operating conditions.
This work does not consider periodic components because
they cannot be distinguished from the random and dynamic
nature of the changes in operating conditions. The moving
average method is adopted to examine values’ fluctuating
patterns, trajectories, and magnitudes. Specifically, a moving
average (MA) is employed to depict the magnitude of the
variable. In addition, the statistical indicator coefficient of
variation (C.V.) is introduced to evaluate the volatility of
variables. It aims to keep the observation volume consistent,
which can be mathematically expressed as a preference for
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lower volatility. Therefore, it is feasible to accurately evaluate
operational modifications by monitoring volatility fluctuations.
It is obtained as:

Ci=
Si

Ai
(1)

where Ci is the ith C.V., Si denotes the moving standard
deviation (SD), and Ai denotes the MA, i.e.,

Ai=
1

t

i∑
j=i−t+1

yj (2)

where t is the window size, and yj is the data point j in the
primary data set. In addition, the moving standard deviation
Si is obtained as:

Si=

√√√√1

t

i∑
j=i−k+1

(yj − ȳ)
2 (3)

where ȳ is the average value of the data within the window.

C. Clustering by Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is adopted to cluster
the features of the working conditions. It considers various
distribution patterns in the dataset, an unknown covariance
matrix, and high-dimensional data.

Decide number of Decide number o

distributions

Initialize random itialize random

mean and mean and 

variance for each variance for each

distribution

Repeat until model converges

Change the number Change the number

of distributions

Compare each Compare each 

AIC/BIC for AIC/BIC for 

different covariance erent covarian

structure 

Repeat until low AIC eat until low

reached

Model Tuning

E-Step

Generate distributions based on mean

and variance from the previous step

M-Step

Calculate the probability of each data point

belong to each generated distribution

Update the mean and variance to maximize

the probability for each data point

Fig. 1. GMM Clustering and Optimization

GMM and the estimated associated parameters are consid-
ered issues involving incomplete data. Therefore, the Expec-
tation Maximization (EM) technique [19] is a viable solution.
It is employed to estimate the latent variables and parameters.
This process is iterative and may be loosely separated into two
steps, including the E-step and the M-step.

In the E-step, the posterior probability is revised. For each
data point, the possibility that it belongs to cluster (k) is
computed as:

h
(j)
k (i)=

π
(j)
k N

(
xi | µ(j)

k ,Σ
(j)
k

)
∑K

k=1 π
(j)
k N

(
xi | µ(j)

k ,Σ
(j)
k

) (4)

where k is the count of clusters in the Gaussian distribution, πk
is the mixing coefficient of the Gaussian distribution, which is
initialized in the previous stage. The whole process is shown in
Fig. 1.N (x | µ,Σ) denotes the probability density function of
the Gaussian distribution. It shows the coherence of the mean

µ and covariance Σ of data set X . In addition, N (x | µ,Σ)
can be obtained as:

N (xi, µk,Σk)=
1

(2π)
1
2 |Σk|

1
2

exp

(
−1

2
(xi−µk)

T Σ−1
k (xi−µk)

)
(5)

In the M step, the parameters are updated according to the
following rules:

π
(j+1)
k =

1

N

N∑
i=1

h
(j)
k (i)

µ
(j+1)
k =

N∑
i=1

h
(j)
k (i)xi

N∑
i=1

h
(j)
k (i)

Σ
(j+1)
k =

N∑
i=1

h
(j)
k (t)

(
xi − µ

(j+1)
k

)2

N∑
i=1

h
(j)
k (i)

(6)

where N represents the size of the dataset. This process is repeated
until the algorithm converges, i.e., the model parameters do not
change significantly from one iteration to the next.

In most applications, k and Σ are unknown. Therefore, comparing
information criteria can tune a GMM. The Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) are
two popular information criteria. Let k be the desired number of
components and Σ be the covariance structure of all components.
Algorithm 2 shows the tunning process of the GMM.

Algorithm 2 Fitted GMM
Input: Dataset (X=x1, x2, ..., xN ), the maximum number of
Gaussian distributions (K), maximum number of iterations
(ñ), covariance structure (Σ)
. Output: Tuned GMM

1: Initialize GMM parameters: µk,Σk, πk

2: Set ñ
3: for k=1 to K do
4: for each data point xi in X do
5: while n ≤ ñ do
6: %Expectation step (E-step)
7: Calculate the probability density function

N (x | µ,Σ) with (5)
8: Calculate the posterior probability hk(i) with (4)
9: %Maximization step (M-step)

10: Update µk, Σk, πk with (6)
11: n←n+1
12: end while
13: end for
14: end for
15: Obtain µk,Σk, πk for each Gaussian distribution
16: for each (k,Σk) pair do
17: Estimate the AIC and BIC
18: end for
19: Choose the (k,Σk) pair with lowest AIC or BIC
20: Return the fitted GMM
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III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Combining Expert Knowledge for Correlation Analysis
By examining eight specified settings and four observation tasks,

each group accumulates 115,000 data points, representing seven
days of operational data. The findings of the correlation study are
presented in Table I. The strong and weak association rules can be
identified by filtering variables with better scores. After the expert
interpretation, the data analysis results dismiss the significant link
between the output pressure Y 3 and the kiln speed X5. The wind
pressure in a kiln is mainly influenced by factors, including fan speed,
ventilation efficiency, and kiln output, rather than the kiln rotation
speed. Therefore, this work posits that the cause may be attributed
to biased data samples. Hence, utilizing specialized expertise and
methodologies can decrease the complexity of data analysis and
rectify the results.

TABLE I
RESULTS OF CORRELATION ANALYSIS

Series X1 X2 X3 X4 X5 X6 X7

Y 1 0.9274 0.6978 0.8249 0.8094 0.7698 0.7347 0.5318
Y 2 0.8819 0.6919 0.8140 0.8060 0.7408 0.7305 0.8181
Y 3 0.7683 0.8876 0.8612 0.6852 0.8183 0.6577 0.8441
Y 4 0.7214 0.6087 0.9152 0.9145 0.7125 0.8218 0.7182

B. Feature Exaction of Working Condition
The dataset’s collection period for observed variables is three

seconds for each interval, which is not constant. Therefore, the time
series is initially resampled at a uniform interval of 30 seconds
per time interval for further processing. The data undergoes feature
exaction before the unsupervised learning. This work utilizes the
two-dimensional properties of MA and C.V. for cluster analysis. The
time frame for the MA is configured to five minutes, while the time
window for the standard deviation is set to 30 minutes. In addition, the
Z-score normalization technique is adopted to preprocess the feature
data to address dimensional disparities. It enhances the algorithm’s
convergence rate and mitigates the influence of feature discrepancies
on the model. The results following the extraction of feature values
and preprocessing are shown in Fig. 2.

C. Clustering by GMM
Fig. 3 shows the preprocessed dataset of the characteristic variables

of Y 1 kiln current. Initially, it is shown in Fig. 4 that the dataset
is represented by the contour of the fitted GMM. After applying
the fitted GMM, the data is partitioned into distinct clusters. The
outcome of this partitioning is illustrated in Fig. 5. Then, the
GMM should be fine-tuned. Specifically, the experiments begin by
explicitly stating all the possible options for covariance structures
and employing regularization techniques to prevent the occurrence
of poorly conditioned covariance matrices. The number of iterations
for the EM algorithm is set to 10,000. Next, the GMM is trained
using all possible combinations of parameters, determining the values
of AIC and BIC for every fitting. The final convergence status of
each partner is monitored. According to the AIC and BIC values,
the optimal model is found to have five components and a diagonal,
non-shared covariance matrix structure.

The best GMM results are shown in Table II. Mean Value (1) refers
to the arithmetic mean calculated from the MA values associated with
each cluster’s set of features. Similarly, Mean Value (2) denotes the
average of the C.V. values for the features within each cluster. It is
shown that the two feature components chosen in the experiment
are independent, and each component has its covariance matrix.
An ellipse’s major and minor axes are parallel or perpendicular to

(a) Preprocessing for MA

(b) Preprocessing for C.V.

Fig. 2. Preprocessing feature value

TABLE II
BEST GMM RESULTS

Component Mixing Ration Mean Value (1) Mean Value (2)

1 0.2834 0.0686 0.3077
2 0.3240 -0.2065 -1.0617
3 0.1568 -0.5962 1.4765
4 0.1791 1.2219 -0.1239
5 0.0566 -1.4033 0.8464

the x- and y-axes. However, they can vary in terms of their size
and direction. This aligns with the current reality, as there is no
association between the average and volatility of the observations,
and the data size for each state classification is unequal. The most
suitable model is ultimately employed to group the training data into
clusters. Then, it is shown in Fig. 6 that the clustered data and the
plot of component ellipses are generated.

D. Comparative Experiments
Two sets of comparative experiments are conducted to assess

the efficiency of the WCP. The experiments are executed using a
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Fig. 3. Scatter plot and Fitted Gaussian Mixture contours

Fig. 4. Data set of Y1 eigenvalue

Fig. 5. Clustered data and component structures

consistent dataset, employing a rigorous five-fold cross-validation
methodology. The principal aim is to measure the model’s accuracy.
Thus, the F1-score is adopted to measure the precision. The compar-
ative models are shown as:

Fig. 6. Scatter plot grouped by cluster after tuned

1) Utilize predetermined parameters exclusively for predicting
working conditions (Setting-WCP).

2) Utilize observational data for predicting working conditions
(Response-WCP).

3) Integrate the predetermined parameters in OML using GMM
for predicting working conditions (OML-WCP).

Table III shows the experimental results and Fig. 7 shows the
Receiver Operating Characteristic (ROC) curves of each model. They
indicate that the Response-WCP achieves an average F1-score of
0.57. It demonstrates that numerical forecasting of a single variable
is insufficient in effectively capturing the seasonality, periodicity, and
unpredictability present in time series data. Due to numerous intri-
cate factors that can significantly impact observational data, relying
exclusively on past data to generate forecasts is incorrect. Correlation
parameter analysis can enhance prediction accuracy. However, its
effectiveness remains constrained, with a maximum accuracy of
73%. Furthermore, the observed variables exhibit distinct patterns
despite the operator configuring the same parameter presets. This
has a significant impact on the prediction accuracy. Therefore, the
experimental results confirm the efficiency of the feature extraction.

IV. CONCLUSIONS

Real-time parameter adjustment is essential to maintain efficiency
and quality in the process industry. Accurate identification and
forecasting of working conditions are critical for informed production
decisions. However, it is challenging to achieve precise control due
to the industry’s complex processes and unpredictable disturbances.
Traditional approaches often rely on key parameters to develop
regression or numerical prediction models. They struggle to capture
the full complexity of the production process, resulting in less
accurate predictions.

This work proposes a Working Condition Prediction (WCP) frame-
work based on an Operation Mode Library (OML) called OML-WCP.
It aims to enhance condition prediction and address the challenges of
precise control in complex process industries. By integrating expert
knowledge, OML-WCP establishes relationships between highly cor-
related quantities and observed variables, providing a deeper under-
standing of the underlying process mechanisms. Observed variables
are adopted as proxies for working conditions, and two sets of
features are extracted using sliding mean and variance analysis.
The Gaussian Mixture model is then applied to construct a robust
OML. Experimental results demonstrate that OML-WCP is highly
effective for predicting working conditions, achieving a success rate
exceeding 92%. Furthermore, the continuous accumulation of OML
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(a) ROC (Setting-WCP) (b) ROC (Response-WCP) (c) ROC (OML-WCP)

Fig. 7. ROC of each model

TABLE III
F1-SCORES OF ABLATION STUDIES

Method Task1 Task2 Task3 Task4 Average

Setting-WCP 0.6451 0.7230 0.7695 0.7837 0.7303
Response-WCP 0.4516 0.4763 0.6388 0.7660 0.5728
OML-WCP 0.9126 0.9393 0.9332 0.9001 0.9213

can improve prediction accuracy in practical applications. This state-
based prediction method is adaptable in various process industries.
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