
Energy-minimized Partial Computation Offloading
in Cloud-assisted Vehicular Edge Computing

Systems
Ziqi Wang

Faculty of Information Technology
Beijing University of Technology

Beijing, China
ziqi wang@emails.bjut.edu.cn

Xinyang Li
Faculty of Information Technology

Beijing University of Technology
Beijing, China

lixinyang020826@126.com

Jiayi Wang
Faculty of Information Technology

Beijing University of Technology
Beijing, China

jacklinwang0109@gmail.com

Jiahui Zhai
Faculty of Information Technology

Beijing University of Technology
Beijing, China

zhaijiahui@emails.bjut.edu.cn

Shichao Chen
Institute of Automation

Chinese Academy of Sciences
Beijing, China

shichao.chen@ia.ac.cn

Jing Bi
Faculty of Information Technology

Beijing University of Technology
Beijing Huairou Academy of Parallel Sensing

Beijing, China
bijing@bjut.edu.cn

Abstract—Nowadays, the rapid advancement of Connected
and Automated Vehicles (CAVs) has led to their integration
with various capabilities, encompassing environmental sensing,
decision-making, and multi-level assisted driving. However, the
integration of computationally intensive applications like naviga-
tion and autonomous driving challenges CAVs due to their limited
computational resources, necessitating the timely completion of
computations. Vehicular Edge Computing (VEC) offers a solution
by enabling CAVs to partially offload computation-intensive
tasks to Roadside Units (RSUs) embedded with Roadside Edge
Servers (RESs). Nonetheless, RSUs have finite computational
resources. Therefore, a Cloud-assisted Vehicular Edge Computing
(CVEC) architecture is introduced to address this problem.
In this paper, we first formulate a typical CVEC system and
then formulate a constrained optimization problem based on
the aforementioned system, which considers both communication
latency and energy consumption. Finally, a novel optimization
algorithm called Whale optimization embedded with Simulated-
Annealing and Genetic-learning (WSAG) is proposed to solve the
above optimization problem. WSAG simultaneously determines
the resource allocation and optimizes the energy consumption
of the system. Experiment results prove that WSAG significantly
achieves lower energy consumption with faster convergence speed
than state-of-the-art peers.

Index Terms—Vehicular edge computing, computation offload-
ing, cloud computing, intelligent optimization algorithms

I. INTRODUCTION

In recent years, Connected and Automated Vehicles (CAVs)
have attracted increasing attention in industry [1] [2]. However,
their limited computing resources pose challenges, especially
for computation-intensive tasks. To address this problem, two
solutions are proposed: Mobile Cloud Computing (MCC)
[3] and Vehicular Edge Computing (VEC) [4]. The former

This work was supported in part by the Education and Teaching Research
Projects of Beijing University of Technology (ER2022KCB05), Beijing Nat-
ural Science Foundation (L233005).

one utilizes remote Cloud Data Centers (CDCs) to enhance
the computing performance of CAVs but suffer from delays
and privacy concerns. The latter one offloads computationally
intensive tasks to Roadside Units (RSUs) embedded with
Roadside Edge Servers (RESs) that offer more computing ca-
pabilities. However, RSUs have limited resources compared to
CDC. Based on the aforementioned analysis, a Cloud-assisted
VEC (CVEC) system is constructed to handle computation-
intensive CAV tasks with strict latency requirements [5]. Two
key challenges remain, the first one is to optimize resource
allocation [6] for timely task execution and the second one is
to minimize energy consumption of the CVEC system [7].

Motivated by the above analysis, this work proposes an
energy-minimized computation offloading technique within a
fundamental unit architecture that includes a moving CAV,
RSUs, and a CDC. A constrained optimization problem is for-
mulated and a novel optimization algorithm called Whale op-
timization embedded with Simulated-Annealing and Genetic-
learning (WSAG) is proposed to optimize energy consump-
tion of the CVEC system. Experiments demonstrate WSAG’s
effectiveness in achieving energy-minimized computation of-
floading. Main contributions of this paper are summarized as
follows.

1) A three-tier CVEC framework is constructed in this work.
It consists of a dynamic CAV, multiple RSUs deployed
with RESs, and a CDC. Moreover, tasks in this CAV can
be split and dynamically offloaded to RSUs and/or CDC
for parallel execution.

2) For the above CVEC system, a constrained Mixed In-
teger Nonlinear Programming problem (MINLP) is con-
structed. This problem takes into account the Central Pro-
cessing Unit (CPU) computation frequency, data trans-

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 N

et
w

or
ki

ng
, S

en
si

ng
 a

nd
 C

on
tro

l (
IC

N
SC

) |
 9

79
-8

-3
50

3-
69

50
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
N

SC
58

70
4.

20
23

.1
03

18
99

7

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 22,2025 at 03:52:14 UTC from IEEE Xplore. Restrictions apply.

mission rate, as well as the upstream and downstream
transmission channel resources of the CAVs, RSUs, and
the CDC. The goal is to optimize the energy consumption
of the system as well as satisfy the time limit defined by
the user.

3) A novel optimization method called WSAG is presented
to address the previously mentioned optimization chal-
lenge. It jointly optimizes task offloading and resource
allocation among a CAV, RSUs, and the CDC, while
ensuring that tasks are completed within the maximum
constraint time.

II. PROBLEM FORMULATION

To address the energy minimization challenge in the CVEC
system, we propose a unit architecture as illustrated in Fig. 1.
In this system, a CAV dynamically moves along a road and dy-
namically generates a set of K tasks, and partial offloads them
to a RSU embedded with a RES. Each task is represented as
a four-element tuple, i,e., {αk, βk, xk, δk} where αk denotes
the size of task k, βk denotes the processing density of task
k (CPU cycles/bit), xk denotes the memory density of task k
(MB /bit) and δk denotes the ratio of returned data to input data
after task k is executed at the edge. Moreover, each task in the
CAV can be executed in CAV, a RSU and/or the CDC. Tasks
are offloaded to RSU through wireless channels shared by the
CAV. Additionally, tasks in RSU can be further offloaded to
the CDC. Moreover, RSUs are connected to the CDC through
high-speed fiber links. This work focuses on computation-
intensive tasks that are independent of each other. For instance,
navigation applications can be divided into multiple logically
independent tasks, each of which can be executed in the CAV
or RSU/CDC by using partial computation offloading.

In this proposed architecture, if the CAV drives into the
coverage area of RSU i (1≤i≤N), the CAV establishes a
connection with this RSU, denoted as θi=1; otherwise, θi=0.
Additionally, each task can be executed on CAV, RSU and/or
the CDC. λk0 , λki and λkic denotes the proportions of task k
executed in CAV, RSU i and the CDC. As a result, for task
k offloaded to RSU i, the sum of λk0 , λki and λkic equals one,
i.e.,

λk0+λ
k
i+λ

k
ic=1 (1)

Therefore, all tasks executed on the CAV should not exceed
its maximum CPU capacity (ĈL), memory capacity (M̂L), and
its maximum CPU running speed (F̂0), i,e.,

K∑
k=1

αkλ
k
0βk≤ĈL,

K∑
k=1

αkλ
k
0xk≤M̂L,

K∑
k=1

fk0≤F̂0 (2)

where fk0 denotes the CPU running speed of a CAV for task
k.

All tasks executed on the RSU i should not exceed its
maximum CPU capacity (Ĉi) and memory capacity (M̂i), as
well as its maximum CPU running speed (F̂i), i,e.,

K∑
k=1

θiαkλ
k
i βk≤Ĉi,

K∑
k=1

θiαkλ
k
i xk≤M̂i,

K∑
k=1

θif
k
i ≤F̂i

(3)
where fki denotes the CPU running speed of the RSU i for
task k.

Similarly, all offloading tasks from RSU i processed on
the CDC should not exceed its maximum CPU capacity (Ĉc),
memory capacity (M̂c), and its maximum CPU running speed
(F̂c), i,e.,

N∑
i=1

K∑
k=1

θiαkλ
k
icβk≤Ĉc,

N∑
i=1

K∑
k=1

θiαkλ
k
icxk≤M̂c,

N∑
i=1

K∑
k=1

θif
k
ic≤F̂c

(4)
where fkic denotes the CPU running speed of the CDC

connected to RSU i for task k.
The following three parts will formulate a bandwidth, la-

tency and energy model based on the proposed CVEC system.

Cloud

Servers

RES

RSU

RES

RSU

RSU

RES

RES

RSU

RES

RSU

RES

RSU

Fig. 1. Architecture of the CVEC system.

A. Bandwidth Model

This work considers one frequency division duplex mode in
each uplink/downlink channel. Based on Shannon’s theorem
[8], the data transfer rate of CAV’s k task on the uplink channel
with SBS i (r̂ki) can be calculated as:

r̂ki =θiW1log2(1+
PL(di)

−o|f |2

ω0
) (5)

where W1 denotes the bandwidth in RSU i’s uplink channel
used by the CAV. f denotes the fading coefficient of the uplink
channel. ω0 denotes the power parameter of white Gaussian
noise, and di denotes the distance from the CAV to RSU i. PL

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 22,2025 at 03:52:14 UTC from IEEE Xplore. Restrictions apply.

represents the transmitting power of the CAV and is obtained
as:

PL=s0(f
k
0)

3
(6)

where s0 is a constant determined by the chip architecture of
the CAV.

Similarly, the data transfer rate of CAV’s k task on the
downlink channel with SBS i (řki) can be obtained as:

řki =θiW2log2(1+
P i(di)

−o|f̃ |
2

ω0
) (7)

where W2 denotes the bandwidth in RSU i’s downlink channel
allocated for the CAV, and f̃ denotes the fading coefficient of
the downlink channel. P i means the transmitting power of
RSU i and it is obtained as:

P i=si(f
k
i)

3
(8)

where si is a constant and determined by the chip architecture
of the RSU i.

B. Latency Model

The CVEC system consists of multiple time-consumption
components, including computation and data transmission
among CAV, RSU and the CDC. It is worth noting that tasks
have to be completed within their delay limits and the coverage
area of RSU. As a result, this section formulates the latency
model of the system.

Let T k
L denotes the execution time of task k on CAV and

it is obtained as:

T k
L=

αkλ
k
0βk
fk0

(9)

T k
i denotes the total time of executing task k of CAV on

RSU. It is obtained as:

T k
i =Ṫ

k
i +T̈

k
i (10)

where Ṫ k
i denotes the time of executing task k on RSU i and

T̈ k
i denotes the time of data uploading, downloading for task
k between CAV and RSU i. They are obtained as follows:

Ṫ k
i =

θiαkλ
k
i βk

fki
(11)

T̈ k
i =

θiαkλ
k
i

R̂i

+
θiαkλ

k
i

Ři

(12)

where R̂i and Ři denote the total upload/download transfer
rate from CAV to RSU i, and they are obtained as follows:

R̂i=

K∑
k=1

λki r̂
k
i (13)

Ři=

K∑
k=1

λki ř
k
i (14)

Let T k
iC denote the total time of executing task k of CAV

on the CDC associated with RSU i and it is obtained as:

T k
iC=Ṫ

k
iC+T̈

k
iC (15)

where Ṫ k
iC denotes the time of executing task k on CDC

associated with RSU i and T̈ k
iC denotes the time of data

uploading, downloading for task k between RSU i and the
CDC. They are obtained as follows:

Ṫ k
iC=

θiαkλ
k
icβk

fkic
(16)

T̈ k
iC=

θiαkλ
k
ic

R̂ic

+
θiαkλ

k
icδk

Řic

(17)

where R̂ic and Řic denote the total upload/download transfer
rate from RSU i to the CDC.

It is worth noting that the computation in CAV and edge
(RSU and CDC) works in parallel. As a result, the time by
executing task k from the CAV (Tk) is the maximum value
of local computation and edge computation, which is obtained
as:

Tk=max(T k
L, T

k
i +T

k
iC) (18)

Moreover, the total computational time cannot exceed the
upper limit required by the user and a RSU must return results
to the CAV before it moves beyond the coverage area of this
RSU, i.e.,

Tk ≤ T̂k (19)

where T̂k denotes the minimum value of the user’s required
time limit and the time for the CAV to leave the coverage area
of the associated RSU, i.e.,

T̂k=min(T̂u
k ,
Li

v
) (20)

where T̂u
k represents the user’s required time limit. Li denotes

the coverage length of RSU i along the route, and v is the
speed of the CAV.

C. Energy Model

This section formulates the energy consumption model of
the CVEC system. Ek

L denotes the energy consumption of
locally executed task k by the CAV and it is obtained as:

Ek
L=P

LT k
L=s0(f

k
0)

2
αkλ

k
0βk (21)

Let Ek
i denote the energy consumption of executing task k

associated with RSU i and it comprises two parts, i.e.,

Ek
i =Ė

k
i +Ë

k
i (22)

where the first term denotes the energy of executing the
offloading task k on RSU i, while the second term denotes
the transmission energy between the CAV and RSU i. They
are obtained as follows:

Ėk
i =P

iṪ k
i =θisi(f

k
i)

2
αkλ

k
i βk (23)

Ëk
i =P

L θiα
k
i λ

k
i

R̂i

+P i θiα
k
i λ

k
i

Ři

(24)

Let Ek
iC denote the energy consumption of executing task

k related to CDC and it comprises two parts, i.e.,

Ek
iC=Ė

k
iC+Ë

k
iC (25)

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 22,2025 at 03:52:14 UTC from IEEE Xplore. Restrictions apply.

where the first term denotes the energy of executing the
offloading task k on the CDC and the second term denotes
the transmission energy between CDC and RSU i. They are
obtained as:

Ėk
iC=P

C Ṫ k
iC=P

C θiαkλ
k
icβk

fkic
(26)

Ëk
iC=P

i θiαkλ
k
ic

R̂ic

+PC θiαkλ
k
icδk

Řic

(27)

where PC is the transmitting power of the CDC.
Finally, 𭟋 denotes the total energy consumption of the

CVEC system, which consists of three parts, i.e.,

𭟋=

N∑
i=1

K∑
k=1

(Ek
L+E

k
i +E

k
iC) (28)

III. WHALE OPTIMIZATION EMBEDDED WITH
SIMULATED-ANNEALING AND GENETIC-LEARNING

(WSAG)

To sum up, decision variables are λk0 , λki , λkic, θi, fk0 , fki ,
fkic, PL, P i, and the optimization objective is to minimize F ,
i.e.,

Min
Ψ

F

where Ψ denotes a vector of decision variables, which are
subject to (1), (2), (3), (4) and (19).

Given the constrained optimization problem (𭟋), our pro-
posed WSAG is given as follows. 𭟋 is nonlinear with re-
spect to decision variables. To handle the above constraints,
a penalty function method [9] is adopted to transform all
constraints into the penalty and convert this problem into an
unconstrained optimization one.

WSAG uses chaotic mapping [10] to initialize the popu-
lation that can well cover the search space. M denotes the
number of individuals of the population and D denotes the
dimension of each individual. The population (X) is initialized
as:

Zi=4× Zi−1 × (1− Zi−1), i ∈ [2, 3, ...,M]

Xi=b̌d+(b̌d − b̂d)× Zi, i ∈ [1, 2, ...,M]
(29)

where Z denotes a M ×D zero matrix. b̌d and b̂d represent
lower and upper bounds of each dimension d.

During optimization, Whale Optimization Algorithm
(WOA) assumes that each whale has a 50% probability of
choosing either the shrinking encircling model or the spiral
model. However, the fixed probability of choosing each model
may trap into local optima at the later stage of optimization
when solving complex optimization problems. As a result,
WSAG allows more whales to choose shrinking encircling
model at the early stage to enhance the exploration ability
and choose the spiral model at the later stage to enhance the
exploitation ability. t denotes the current iteration number and
t̂ denotes the maximum number of iterations. Therefore, when
t
t̂
<0.5, the possibility of choosing shrinking model is 0.8, i.e.,
p1=0.8; otherwise, p1=0.3.

For the shrinking encircling model, A and C denote the
coefficient vectors and they are updated as illustrated in [11].
|A|<1 denotes the exploitation phase and each individual is
updated as:

Xi(t+1)=X∗(t)−A ·D
D=|CX∗(t)−Xi(t)|

(30)

where Xi(t) and Xi(t + 1) is the position of individual i in
iteration t and t+1. X∗(t) is the best individual of iteration
t, and | · | denotes the absolute value.

On the other hand, |A| ≥ 1 denotes the exploration phase
and individuals are updated as:

Xi(t+1)=Xr(t)−A ·D
D=|C ·Xr(t)−Xi(t)|

(31)

where Xr(t) is a random individual of the population in
iteration t.

Moreover, for the spiral model, individuals are updated as:

Xi(t+1)=D
′
· ebl · cod(2πl)+X∗(t) (32)

where D
′
=|X∗(t)−X(t)|, b is a constant for defining the

shape of the logarithmic spiral, l is a random number in
[−1, 1].

WSAG adopts SA’s Metropolis acceptance rule when se-
lecting individuals for the next iteration. The Metropolis ac-
ceptance rule allows for the exploration of directions that may
worsen objective function values. This property enables the
algorithm to escape local optima and effectively search for the
global optimum by adjusting the cooling rate of temperature.
The possibility of acceptance is given as:

pa=e
−ψ
T (33)

where ψ is the difference of fitness values before and after
the update. T is the initial temperature in SA, and pa is the
possibility of acceptance.

WSAG incorporates the crossover operation of genetic
learning to maintain population diversity. After the update,
each individual performs crossover operation. To be specific,
if the updated individual is better than a randomly selected
individual from the population, X(t+1) is updated as Eq. 34;
otherwise, it is updated as Eq. 35.

Xi
d(t+1)=r ·X∗

d (t)+(1−r1−r2) ·Xk
d (t) (34)

Xi
d(t+1)=Xk

d (t) (35)

where Xi
d(t+1) denotes dimension d of individual i in iter-

ation t+1. X∗
d (t) denotes dimension d of the best individual

in iteration t. Xk
d (t) denotes dimension d of individual k in

iteration t. r1 and r2 are two random numbers between [−1, 1].
k is a random integer between [1,M].

Finally, a mutation operation is adopted in the later stage
of WSAG to enhance the exploration of the search space.
To be specific, the individual is mutated and the mutation
probability is controlled by pm. It is worth noting that mutation

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 22,2025 at 03:52:14 UTC from IEEE Xplore. Restrictions apply.

is only allowed in the later stage of the optimization process
for avoiding to mislead the optimization direction in the early
stage. The details of WSAG are provided in Algorithm 1.

Algorithm 1 WSAG
Input: t̂, b̌d and b̂d, T , pm
Output: Final population X

1: Initialize X with (29)
2: Calculate the fitness values of all individuals and choose the best one as X∗

3: for t=1:t̂ do
4: for i=1:M do
5: Update a,A,C, l with
6: if t<0.5 × t̂ then
7: p1 = 0.8
8: else
9: p1 = 0.3

10: end if
11: if p<p1 then
12: if |A|<1 then
13: Update Xi(t + 1) with (30)
14: else
15: Select a random individual Xr

16: Update Xi(t + 1) with (31)
17: end if
18: else
19: Update Xi(t + 1) with (32)
20: end if
21: Calculate the acceptance probability with (33)
22: if f(Xi(t+1)) < f(Xi(t)) then
23: Xi(t+1) = Xi(t+1)
24: else
25: if p>r1 then
26: Xi(t+1) = Xi(t+1)
27: else
28: Xi(t+1) = Xi(t)
29: end if
30: end if
31: for d=1:D do
32: Select k as a random number between [1,M]
33: if f(Xi(t + 1)) < f(Xi(t)) then
34: Update Xi

d(t+1) with (34)
35: else
36: Update Xi

d(t+1) with (35)
37: end if
38: end for
39: if t>0.8 × t̂ then
40: for d=1:D do
41: if r<pm then
42: Xi

d=b̌d+(b̂d−b̌d)
43: end if
44: end for
45: end if
46: end for
47: t=t+1
48: end for
49: return X

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Parameter setting of the CVEC system is shown in Table
I. Moreover, the parameters of WSAG are set as follows.
pm=0.4, and T=107. We compare WSAG with four bench-
mark algorithms including genetic algorithm (GA) [12], WOA
[13], particle swarm optimization (PSO) [14], and SA [15]. All
parameters of these algorithms are set by using their optimal
values.

Figs. 2 and 3 illustrate the energy consumption and the
penalty comparisons among WSAG, GA, WOA, PSO and SA
in each iteration, respectively when there are 5 RSUs in the
system. It is shown that WSAG achieves the lowest energy
consumption (16.39 J). Moreover, it is shown in Fig. 3 that
the penalty of WSAG is zero at the end of the iteration, which
proves that the solution obtained by WSAG is valid. The

penalties of GA, WOA and PSO cannot decrease to zero and
PSO yields a satisfied solution after 860 iterations, which is
longer than WSAG. Moreover, we compare WSAG with three
offloading strategies including local computing, full offloading
and random offloading. The total system energy consumption
of the system with different distances of the CAV traveled on
the road is shown in Fig. 4. It is shown that WSAG achieves
the lowest energy consumption at almost all distances and it
increases in a linear manner. Moreover, Table II demonstrates
the penalty of the four strategies at different distances and it
is shown that none of the strategies except WSAG produces a
valid solution, which proves that WSAG outperforms other
compared algorithms. Finally, Fig. 5 shows the penalty of
WSAG with different number of RSUs. It is shown that the
penalty of WSAG is zero, which proves that it can always find
valid solutions with different number of RSUs.

0 200 400 600 800 1000

Iteration count

50

100

150

200

250

300

350

E
n

er
g

y
 (

J)

Fig. 2. Energy in each iteration for each algorithm.

0 200 400 600 800 1000

Iteration count

0

100

200

300

P
en

al
ty

Fig. 3. Penalty for each algorithm.

100 150 200 250 300 350 400 450

Distance (m)

0

100

200

300

400

500

600

E
n

er
g

y
 (

J)

Fig. 4. Energy v.s. distance for each algorithm.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 22,2025 at 03:52:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I
PARAMETER SETTING

δk K αk B1 B2 Wi di S0 Si Sc f̂0 f̂i f̂c

0.2 [1,8] [100 MB-1 GB] 10 MHZ 10 MHZ 1 [50,100] m 10−27 10−29 10−31 106 cycles/s 108 cycles/s 1012 cycles/s

TABLE II
PENALTY OF EACH STRATEGY FOR DIFFERENT DISTANCES

Strategies

D
100 150 200 250 300 350 400 450

WSAG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Local computing 1.76×10−04 2.87×10−04 1.84×10−02 6.68×10−02 7.10×10+01 1.43×10+02 3.81×10+02 1.58×10+04

Full offloading 4.12×10−04 4.32×10−04 5.64×10−03 4.67×10−01 2.90×10+01 3.71×10+02 5.57×10+03 7.41×10+04

Random offloading 1.91×10−04 2.29×10−04 2.33×10−02 5.55×10−02 9.40×10+01 1.17×10+02 1.03×10+02 1.65×10+04

0 50 100 150

Iteration count

0

100

200

300

P
en

al
ty

Fig. 5. Penalty of WSAG for different number of RSUs.

V. CONCLUSIONS
Nowadays, there has been a rapid proliferation of Connected

and Automated Vehicles (CAVs) distinguished by their ad-
vanced capabilities, which have significantly improved peo-
ple’s lives. However, the inherent limitation of computational
resources in CAVs poses a challenge when dealing with
numerous computationally intensive tasks under strict time
constraints. To address this problem, this paper constructs
a typical Cloud-assisted Vehicular Edge Computing (CVEC)
system. In this CVEC system, CAVs can partial offload their
computational tasks to Roadside Units (RSUs) embedded with
Roadside Edge Servers (RESs) for processing. Moreover, due
to the limited computational resources of RSUs, they can
further offload tasks to the Cloud Data Center (CDC) for
execution. Additionally, a novel optimization algorithm called
Whale optimization embedded with Simulated-Annealing and
Genetic-learning (WSAG) is proposed to determine the re-
source allocation between a CAV, RSUs and the CDC. It also
optimizes the energy consumption of the system. Experiments
prove that WSAG achieves significantly lower energy con-
sumption with faster convergence speed than state-of-the-art
peers.

REFERENCES

[1] M. Shen, C. He, T. Molnar, et al., “Energy-Efficient Connected Cruise
Control With Lean Penetration of Connected Vehicles,” IEEE Transac-

tions on Intelligent Transportation Systems, vol. 24, no. 4, pp. 4320–
4332, Apr. 2023.

[2] S. S. Avedisov, G. Bansal and G. Orosz, “Impacts of Connected
Automated Vehicles on Freeway Traffic Patterns at Different Penetration
Levels,” IEEE Transactions on Intelligent Transportation Systems, vol.
23, no. 5, pp. 4305–4318, May 2022.

[3] Z. Sharif, L. T. Jung, I. Razzak, et al., “Adaptive and Priority-Based
Resource Allocation for Efficient Resources Utilization in Mobile-Edge
Computing,” IEEE Internet of Things Journal, vol. 10, no. 4, pp. 3079–
3093, Feb. 2023.

[4] Z. Xue, C. Liu, C. Liao, et al., “Joint Service Caching and Computation
Offloading Scheme Based on Deep Reinforcement Learning in Vehicular
Edge Computing Systems,” IEEE Transactions on Vehicular Technology,
vol. 72, no. 5, pp. 6709–6722, May 2023.

[5] J. Bi, K. Zhang, H. Yuan and J. Zhang, et al., “Energy-Efficient Compu-
tation Offloading for Static and Dynamic Applications in Hybrid Mobile
Edge Cloud System,” IEEE Transactions on Sustainable Computing, vol.
8, no. 2, pp. 232–244, Apr. 2023.

[6] K. Mawatwal, R. Roy and D. Sen, et al., “A State Based Resource
Allocation Game for Distributed Optimization in 5G Small-Cell Net-
works,” IEEE Transactions on Vehicular Technology, vol. 70, no. 11,
pp. 12072–12087, Nov. 2021.

[7] J. Park and Y. Lim, “Toward Adaptive Energy Management for Mobile
Edge Networks,” 2022 IEEE 4th Eurasia Conference on IOT, Commu-
nication and Engineering, Yunlin, Taiwan, 2022.

[8] G. Han and S. Shamai, “On Sampling Continuous-Time AWGN Chan-
nels,” IEEE Transactions on Information Theory, vol. 68, no. 2, pp.
782–794, Feb. 2022.

[9] J. Bi, Z. Wang, H. Yuan, et al., “Self-adaptive Teaching-learning-
based Optimizer with Improved RBF and Sparse Autoencoder for High-
dimensional Problems,” Information Sciences, vol. 630, pp. 463–481,
Jun. 2023.

[10] Xun Yi, “Hash function based on chaotic tent maps,” IEEE Transactions
on Circuits and Systems, vol. 52, no. 6, pp. 354-357, Jun. 2005.

[11] Q. Yang, J. Liu, Z. Wu, et al., “A Fusion Algorithm Based On Whale and
Grey Wolf Optimization Algorithm for Solving Real-world Optimization
Problems,” Applied Soft Computing, vol. 146, Oct. 2023.

[12] Q. Zhang, S. Yang, M. Liu, et al., “A New Crossover Mechanism for
Genetic Algorithms for Steiner Tree Optimization,” IEEE Transactions
on Cybernetics, vol. 52, no. 5, pp. 3147–3158, May 2022.

[13] Y. Hang and J. Guo, “Research on Scientific Data Mining Algorithms
based on WOA-BP Neural Networks,” 2023 3rd International Confer-
ence on Consumer Electronics and Computer Engineering, Guangzhou,
China, pp. 667–672, 2023.

[14] J. Zhang, Y. Lu, L. Che and M. Zhou, et al., “Moving-Distance-
Minimized PSO for Mobile Robot Swarm,” IEEE Transactions on
Cybernetics, vol. 52, no. 9, pp. 9871–9881, Sept. 2022.

[15] M. D. Mahardika and Z. K. A. Baizal, “Recommender System for
Tourist Routes in Yogyakarta Using Simulated Annealing Algorithm,”
2023 IEEE 8th International Conference for Convergence in Technology,
Lonavla, India, pp. 1-6, Sept. 2023.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 22,2025 at 03:52:14 UTC from IEEE Xplore. Restrictions apply.

