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Abstract—The global water environment confronts numerous
challenges, e.g., water pollution, overexploitation, and ecological
degradation. Comprehensive protection and management are
imperative for sustainable water resource utilization. Water
quality predictions provide timely warning of future water quality
problems and enable early action to avoid deterioration. As
science and technology are increasingly applied in comprehensive
water environment management, a diverse array of multimodal
data is gathered from various sources, including remote sensing
images and hydrological time series. However, current water
quality prediction methods, e.g., statistical, machine learning,
and deep learning methods fail to utilize multimodal data to
enhance their accuracy of water quality prediction. To solve
the above problem, this work proposes a multi-factor and long-
term water quality prediction model based on multimodal data
fusion named Low-rank Multimodal Fusion TimesNet (LMF-
TimesNet). It first extracts features from hydrological time series
and remote sensing images, respectively. Then, they are fused
with the low-rank multimodal fusion network to extract diverse
information. Finally, TimesNet is adopted to integrate fused
multimodal water environment information for water quality
prediction. Experimental results on a real-world dataset show
that LMF-TimesNet achieves higher prediction accuracy and
generalization ability than its state-of-the-art peers.

Index Terms—Multimodal fusion, water quality prediction,
temporal 2D-variation, feature extraction.

[. INTRODUCTION

Water environment is impacted by natural and social factors,
which is critical in sustaining the well-being of human society
and ecosystems. However, water resources face pollution and
scarcity with the rapid development of emerging manufactur-
ing and information industries. Therefore, water quality pre-
diction technology is vital for real-time assessment, dynamic
control of pollution sources, and comprehensive management
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of water resources. Furthermore, water quality prediction mod-
els have a progressive evolution, such as statistical methods
[1], machine learning models [2], and deep learning models
[3], as monitoring devices and algorithms evolve.

The water environment is influenced by multiple factors,
e.g., climate change, alterations in land basins, and human
activities. Changes in water quality indicators are character-
ized by complexity and nonlinearity. Traditional mechanistic
models demand robust theoretical knowledge in biology and
environmental science, making them unsuitable for real-time
water quality prediction. In addition, statistical models fail to
capture correlations and nonlinear relationships among water
quality indicators. They lack the flexibility to adapt to dynamic
changes in the water environment, thus constraining their
accuracy and applicability in water quality prediction.

Deep learning methods adopt deep neural networks to
deal with intricate data relationships compared to traditional
machine learning ones. They possess robust generalization
capabilities in time series prediction, e.g., convolutional neural
networks [4], long short-term memory networks [5], graph
convolutional neural networks [6], and Transformer [7]. They
are widely employed in water quality prediction. However,
the massive multimodal data is generated from different mon-
itoring stations and satellites. Most water quality prediction
models rely solely on hydrological time series data and over-
look the potential interrelationships among multimodal data.
Moreover, current works concentrate on short-term and single-
step predictions of individual water quality factors, failing to
fully consider the intricate interactions and impacts among dif-
ferent water quality indicators. Therefore, they cannot capture
the long-term trends and dynamic patterns of water quality
changes. Thus, achieving real-time, multi-step, and multi-
factor long-term water quality prediction is imperative.

To solve the above problems, this work proposes a multi-
factor and long-term water quality prediction model named
Low-rank Multimodal Fusion TimesNet (LMF-TimesNet). It
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integrates multimodal water environment information using
multimodal fusion [8] and considers the impact of precipitation
observed in remote sensing images on hydrological time series.
It first extracts features from hydrological time series and re-
mote sensing images. Then, the Low-rank Multimodal Fusion
(LMF) [9] network incorporates the distinctive features of
each modality and efficiently fuses them. Next, TimesNet [10]
utilizes the fused features for final water quality prediction.
Specifically, the fused time series features are converted from
1D to 2D space by Fast Fourier Transform (FFT) [11]. Then,
the stacked 2D convolutional layers are employed to extract
features from multimodal data for water quality prediction,
enhancing the ability to capture changes within interperiod
and intraperiod variation of the time series features. Compar-
ative experiments show that LMF-TimesNet achieves higher
prediction accuracy than its typical peers.

II. PROPOSED METHODOLOGY

A. Low-rank Multimodal Fusion (LMF)

As the number of input modalities increases, both the
dimension of the tensor and the size of the weight tensor
undergo exponential growth. This results in a significant and
substantial computational burden and potential model over-
fitting [12] problems, i.e., the trained model performs well
on training data but struggles to generalize to new data. This
work employs the LMF network to address the tensor-based
fusion challenge. For two modal (remote sensing images and
hydrological time series) inputs, a one-dimensional expansion
method can account for the feature correlation between the
two modes while preserving the information of each mode.
The input tensor formed by the unimodal representation is
formulated as:

M
Z=(X) zm, 2m € R (1)

m=1

where ®n]\f:1 represents the tensor outer product, 2, denotes
the tensor input expanded by one dimension. M represents the
number of modalities, and m is the current index, identifying
each specific input vector z,, in the set. This operation results
in a higher-dimensional tensor by combining each vector z,,.
Then, the input tensor Z€R? *d2X--xdn ig fed into the linear
layer g(-) to produce a vector representation, ie.,

h:g (Z7 W7 b) :WZ+b, h, b = ]Rdy (2)

where W denotes the weight of the layer and b denotes
the bias term. Decomposing the weight tensor )V into a
set of modality-specific and low-rank factors can enhance
the computational efficiency [13]. For an order-M tensor
WieRG > xdm k=1 d,, there always exists an exact
vector decomposition of the form, i.e.,

R M
Wie=> Qu?,, wl?, eRrY 3)
r=1m=1

where R denotes the smallest value that ensures the validity of
the decomposition, and it is the rank of the tensor. The collec-
tion of vectors {{wm kbt b1, k ., dp, constitutes the
decomposition factors of the or1g1na1 tensor with rank R.

In LMF, a rank is initially set to », and it is uti-
lized to parameterize the model with r decomposition
factors {{wmk} 1, k=1, dp, _enabling  the recon-
struction of a low-rank version of Wk. Each Wk con-
tributg§ to one-dimension in the output vector h, ie.,
hip=W,-Z. Next, these vectors are recombined and concate-

nated into M modality-specific and low-rank factors. Let
wi= (@ @ (@)

Or
W15 m27"'7wm7dhi|s where {wm} —, represents

the corresponding low-rank factors for each modality m. Then,
a low-rank weight tensor is defined as:

T M
W=> Q) wi 4)

i=1 m=1

Thus, (2) can be recalculated as:

r M
- (Z ® W%)) .z )
i=1 m=1
Fig. 1 shows the process of the two-modality and low-rank
weight decomposition of hydrological time series and remote
sensing images.
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Fig. 1. Bimodal low-rank weight decomposition.
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After that, Z= Q) z,, is input into (5), i.e.,
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where /\TI‘;[:1 denotes the element-wise product over a se-
quence of tensors.
Then, the input of (6) is illustrated in Fig. 1, i.e.,
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where z, and z, denote the weight tensors of remote sensing
images and hydrological time series, respectively. w, and w,
represent the low-rank factors obtained through their weight
decompositions. Moreover, o denotes the Hadamard product,
indicating that the elements within two vectors are multiplied
element-wise.

Then, h can be computed from the input representation z,,,
without explicitly creating the tensor Z. This is achieved using
the core idea of parallel decomposition of Z and M. In the
simplified calculation of h, the modalities of remote sensing
images and hydrological time series are decoupled, allowing
them to be parameterized by the tensor representing the two
modalities rather than a set of vectors. This approach reduces
the computational complexity of the model and enhances
its fusion performance. In addition, different modalities are
decoupled during the calculation process, allowing it to be
easily generalized to a different number of modalities. In that
case, adding a new modality can be performed by adding
another set of modality-specific factors and extending (7).
After the LMF operation, the two information modalities,
including remote sensing images and water quality time series,
are well integrated. It retains unimodality characteristics and
extracts complementary valuable water quality information
from different modes. Therefore, the fused features can pro-
vide assistance in the decision-making of the next temporal
2D-variation water quality prediction model, further improving
prediction accuracy.

B. TimesNet

External natural and human factors interfere with changes in
hydrological time series data, resulting in a complex pattern
of variation. This work analyzes time series from a multi-
period perspective. The time series commonly exhibit multiple
periodicities, including daily, monthly, and annual changes
in water environment monitoring values. These overlapping
periods interact, rendering variation modeling challenging.
For each period, the variation of individual time points is
influenced by the temporal pattern of their immediate vicinity
and the variation in adjacent periods. Changes occurring
within a single day can be perceived as short-term temporal
patterns. Conversely, the aggregation of these daily changes
can be regarded as a long-term trend across successive periods.
Therefore, these two types of temporal variation are named
intraperiod and interperiod variations. Within each period,
the variation of individual time points is influenced by the
temporal pattern of their adjacent regions and correlated with
the fluctuation and trend of neighboring periods. To tackle this
challenge, the temporal variation is extended into 2D space.
In that case, by converting the 1D time series into a collection
of 2D tensors, the limitation of representation capacity in the
original 1D space can be overcome. Intraperiod and interperiod
variation can be effectively integrated into the 2D domain,
thereby capturing temporal variation in a 2D space.

The original 1D arrangement for time series data is denoted
as Xip € RT*C where T denotes the length and C' denotes
recorded variates. The time series is analyzed in the frequency

domain using the FFT to identify trends and patterns in the
interperiod variation. This process is shown as:

A=Avg (Amp (FFT(Xip))) ®)
U Jd=NA), foe L 0 ©
pi= [?—‘, 1e{l,-- k} (10)

where FFT(-) and Amp(-) represent the FFT and the calcu-
lation of amplitude values, respectively. A€R” denotes the
amplitude calculated at each frequency, which is obtained
by the average value Avg(-) from the C' dimension. N(-)
represents the process of selecting periods k. In addition,
due to the sparsity of the frequency domain and to reduce
noise introduced by insignificant high frequencies, the top-k
amplitude values are selected, where k£ is a parameter that
needs to be determined.

Based on the chosen top-k frequencies {f1,---, fx} and
their corresponding period lengths {p1,--- , px}, the 1D time
series X;p€RT*C can be transformed into multiple 2D ten-
sors, i.e.,

XgD:SPz‘ﬁfi (P(XlD))’i € {1"" vk} (11)

where P represents padding, and P(-) expands the time series
along the temporal dimension with a value of zero to make
it uniform and compatible with the S,, ¢,. S represents the
reshape operation that fills time series data into a 2D tensor.
p; and f; represent the number of rows and columns of the
2D tensor, respectively.

Finally, by leveraging the selected frequency and estimated
period, a set of tensors X3, - - - 7X§D is obtained through the
fusion of remote sensing images and hydrological time series.
These tensors represent the k distinct temporal 2D-variation
generated across different periods.
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Fig. 2. Structure of TimesBlock.

Fig. 2 shows the structure of TimesBlock. It is constructed
as a residual connection. For layer [ of TimesNet with input
X3!, the connection process can be represented as:

X!Ih=0 (Xip') + Xip* (12)

where O(-) denotes the TimesBlock module.

For the TimesBlock [, data processing can be viewed as
two consecutive parts. The first is to capture the temporal 2D-
variation after passing through the transformation from 1D to
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2D. Second, the 2D features are integrated into 1D as input
to the TimesBlock [+1 by adaptively integrating data from
different periods.

The Parameter-efficient Inception Block [14] includes a
multi-scale 2D convolutional kernel. A series of convolutional
kernels of different sizes are utilized through the Inception
Block convolutional network to capture feature information
at different scales in temporal 2D-variation efficiently. This
process can be formalized as:

ﬁg]gzl(xg]g), ie {1, k}

where X7 is the 2D tensor of the i-th transformation. I(-)
represents the Inception Block module, responsible for feature
extraction and characterization learning from the 2D tensor.

Then, the learned 2D feature representation Xé’f) needs to
be transformed back into the one-dimensional space )A(llf) The
padding sequence of length p; X f; is truncated to the original
length T using H(-), which denotes the truncation function.
This process is shown as:

le]g:H(RL(Pini) (ﬁé,ll))) 1€ {15 T ’k}

Finally, the fused & different 1D-representations are input to
the next layer of TimesBlock. Since the frequency and period
corresponding to the peak of amplitude A are representative,
the 2D tensor obtained after the transformation at this ampli-
tude is considered important. Thus, the 1D-representations are
aggregated based on the amplitudes, i.e.,

(13)

(14)

Al—1 Al—-1_ -1 -1
AL Rl =Softmax (Afl ;oo AL )
k 1
[ =1 ol (15)
Xip= E A'fi x Xih
=1

C. Architecture of LMF-TimesNet

Fig. 3 illustrates the structure of LMF-TimesNet. The LMF
module receives inputs of remote sensing images X, and
hydrologic time series X;. After feature extraction of the two
modalities inputs by ResNetl101 [15], the two modalities are
fused in tensor form by the LMF. Next, the obtained fused time
series features are embedded as inputs to TimesNet. It consists
of TimesBlocks stacked in residual connection. First, Times-
Blocks derives the periods of the time series from the FFT.
Then, temporal 2D-variation features are extracted from the
reshaping tensor from 1D to 2D space, utilizing a Parameter-
efficient Inception block containing several multi-scale 2D
convolutional layers. The amplitude is used as the weight
value after passing through the Softmax function to reshape
the output features of the convolutional layer, aggregating the
2D space back to 1D. Following the processes above, the final
prediction result is obtained.

In summary, after multimodal fusion, the water environment
information is transformed from a 1D form to multiple well-
distributed 2D tensors, representing intraperiod and interpe-
riod variation. In turn, TimesBlock can simultaneously and
adequately capture the temporal 2D-variation of hydrologic

time series data fused precipitation information. Therefore, the
LMF-TimesNet integrates abundant water environment infor-
mation through multimodal fusion, facilitating more efficient
representation learning compared to direct extraction from 1D
time series.
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Fig. 3. Overall architecture of LMF-TimesNet.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. Dataset Selection and Processing

The hydrological time series dataset is obtained from the
public information officially released by China’s national
automatic surface water quality monitoring stations. It contains
nine water quality monitoring stations distributed in the Haihe
River Basin of the Beijing-Tianjin-Hebei (BTH) region. The
remote sensing images dataset is obtained from publicly
available precipitation remote sensing images from NASA’s
Goddard Earth Science Data and Information Service Center,
containing global precipitation information. The period of the
two datasets is selected from Jan 1, 2018 to Dec 31, 2023,
i.e., the samples from 2018 to 2023 are used as the dataset,
and there are a total of 10,956 monitoring values.

Hydrologic time series data is collected from each water
quality monitoring station at 0:00, 4:00, 8:00, 12:00, 16:00,
and 20:00. The remote sensing images are sourced from satel-
lite monitoring stations at 0:00 every day and automatically
sampled every 30 minutes, resulting in a total of 48 monitoring
values per day. To ensure the temporal alignment with the time
series data, the remote sensing image data is also selected for
0:00, 4:00, 8:00, 12:00, 16:00, and 20:00 daily. Moreover, the
latitude and longitude ranges of the remote sensing images
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of precipitation are intercepted to the extent of the Haihe
River Basin in the BTH region, which covers the water quality
monitoring area of the nine monitoring stations. This ensures
the spatial alignment with the monitoring stations.

B. Comparative Experiments
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Fig. 4. MSE of different models under different time steps.

To verify the effectiveness of LMF-TimesNet, six baseline
models are adopted for comparison, including Autoformer,
Pyraformer [16], Informer, FEDformer [17], LightTS [18],
and TimesNet. In addition, Mean Squared Error (MSE) is
adopted as the evaluation metric to evaluate the accuracy of
the prediction result. The MSE is more sensitive to significant
errors, which helps to capture the slight deviation of the
predicted values from the true values.

Table I shows the comparative results of MSE on the seven
models for four prediction steps (48, 96, 192, and 336). It
is shown that LMF-TimesNet outperforms other benchmark
models in all prediction spans. The MSE errors are reduced
by 9.1%-36.6% compared to the benchmark models, which
proves that LMF-TimesNet has high accuracy and stability in
long-term water quality prediction. In addition, the multimodal
fusion reduces the MSE by 12.8%, 11.2%, 11.6%, and 9.1%,
respectively, compared with TimesNet at different prediction
steps. It verifies that the multimodal fusion of remote sensing
images and hydrological time series can better capture the
trend of water quality changes and significantly improve
prediction accuracy. Fig. 4 shows the results of the MSE
comparison between LMF-TimesNet and benchmark models
in long-term water quality prediction. It is illustrated that
LMF-TimesNet achieves the best performance and lowest
MSE on all prediction steps, proving that the predicted values
obtained by LMF-TimesNet are closer to the true values of
water quality indicators.

Figs. 5(a)-5(f) illustrate the curves comparing the predicted
with the true values for each model on the dissolved oxygen
indicators. They show a more intuitive understanding of the
strengths and weaknesses of different models for long-term
water quality prediction. Fig. 5(a) and 5(b) show that the

TABLE I
MULTI-FACTOR AND LONG-TERM PREDICTION RESULTS UNDER
DIFFERENT TIME STEPS

Model MSE
48steps  96steps  192steps  336steps

Autoformer 1.260 1.339 1.463 1.730
Pyraformer 1.522 1.491 1.506 1.538
Informer 1.598 1.545 1.523 1.522
FEDformer 1.351 1.539 1.709 1.897
LightTS 1.491 1.479 1.663 1.681
TimesNet 1.161 1.200 1.319 1.515
LMF-TimesNet 1.012 1.066 1.165 1.377

prediction accuracy of the Pyraformer and Informer is sig-
nificantly lower than that of the other models. The predicted
values show high volatility and lack a smooth output sequence,
with the Informer showing particularly poor performance
around time step 1000. It is shown in Figs. 5(c)-5(e) that the
long-term prediction results of the Autoformer, FEDformer,
and LightTS enhance performance compared to Pyraformer
and Informer. Their predicted values show a smoother se-
quence and align more closely with the overall trend of the
predicted values. However, the prediction results for the peak
are relatively conservative, resulting in a shifted and lagging
curve compared to the true values. It is shown in Fig. 5(f) that
TimesNet achieves relatively accurate prediction of sequence
trends and peaks compared to the aforementioned models.
However, there is still some lags compared to the true values.
Fig. 6 shows that LMF-TimesNet performs well in predicting
peaks, stationary sequences, overall trends, and prediction lags,
outperforming the benchmark models.

IV. CONCLUSIONS

Water quality prediction is an essential task of water envi-
ronment management, and it is of great significance in prevent-
ing and controlling water pollution. Many monitoring devices
are deployed for comprehensive water environment manage-
ment, and water quality data shows multimodal characteristics.
However, current water quality prediction models overlook
the mutual influence of changes in multimodal data and fail
to achieve long-term water quality predictions. To solve the
above problems, a novel water quality prediction model named
Low-rank Multimodal Fusion TimesNet (LMF-TimesNet) is
proposed in this work. Feature-level fusion of hydrological
time series and remote sensing images is performed by low-
rank multimodal fusion. Then, the fused feature is utilized
by TimesNet to achieve long-term water quality prediction.
Experimental results with real-life water quality datasets reveal
that the prediction accuracy of LMF-TimesNet outperforms the
existing state-of-the-art models.

Our future work intends to incorporate intelligent optimiza-
tion algorithms [19] to tune the model parameters and improve
the prediction accuracy. In addition, we intend to design a
better computer vision model to replace the inception block
module in TimesNet to extract multimodal water environment
features, further enhancing the model’s performance.
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