
Multi-swarm Genetic Gray Wolf Optimizer with Embedded
Autoencoders for High-dimensional Expensive Problems

Jing Bi1, Jiahui Zhai1, Haitao Yuan2, Ziqi Wang1, Junfei Qiao1, Jia Zhang3 and MengChu Zhou4

Abstract— High-dimensional expensive problems are often
encountered in the design and optimization of complex robotic
and automated systems and distributed computing systems, and
they suffer from a time-consuming fitness evaluation process. It
is extremely challenging and difficult to produce promising solu-
tions in a high-dimensional search space. This work proposes an
evolutionary optimization framework with embedded autoen-
coders that effectively solve optimization problems with high-
dimensional search space. Autoencoders provide strong dimen-
sion reduction and feature extraction abilities that compress a
high-dimensional space to an informative low-dimensional one.
Search operations are performed in a low-dimensional space,
thereby guiding whole population to converge to the optimal
solution more efficiently. Multiple subpopulations coevolve iter-
atively in a distributed manner. One subpopulation is embedded
by an autoencoder, and the other one is guided by a newly
proposed Multi-swarm Gray-wolf-optimizer based on Genetic-
learning (MGG). Thus, the proposed multi-swarm framework
is named Autoencoder-based MGG (AMGG). AMGG consists
of three proposed strategies that balance exploration and
exploitation abilities, i.e., a dynamic subgroup number strategy
for reducing the number of subpopulations, a subpopulation
reorganization strategy for sharing useful information about
each subpopulation, and a purposeful detection strategy for
escaping from local optima and improving exploration ability.
AMGG is compared with several widely used algorithms by
solving benchmark problems and a real-life optimization one.
The results well verify that AMGG outperforms its peers in
terms of search accuracy and convergence efficiency.

I. INTRODUCTION

Evolutionary algorithms (EAs) are inspired by the evo-
lutionary operations of living organisms in nature. EAs
include basic operations such as genetic coding, population
initialization, crossover variations, and operational retention
mechanisms. Compared with traditional optimization algo-
rithms, e.g., calculus-based methods, and exhaustive search
ones, EAs provide global optimization mechanisms with high
robustness and wide applicability. They are self-organizing,

*This work was supported in part by the National Natural Science
Foundation of China (NSFC) under Grants 62173013 and 62073005, and
the Fundamental Research Funds for the Central Universities under Grant
YWF-22-L-1203.

1J. Bi, J. Zhai, Z. Wang and J. Qiao are with the Faculty of Infor-
mation Technology, Beijing University of Technology, Beijing 100124,
China. Email: bijing@bjut.edu.cn, zhaijiahui@emails.bjut.edu.cn, wangz-
iqi0312@163.com, junfeiq@bjut.edu.cn.

2H. Yuan is with the School of Automation Science and Elec-
trical Engineering, Beihang University, Beijing 100191, China. Email:
yuan@buaa.edu.cn.

3J. Zhang is with the Department of Computer Science in the Lyle School
of Engineering at Southern Methodist University, Dallas, TX 75205, USA.
Email: jiazhang@smu.edu.

4M. Zhou is with the Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102 USA. Email:
zhou@njit.edu.

adaptive and self-learning. They can effectively deal with
complex problems, e.g., NP-hard problems [1], [2], which are
difficult to be solved by traditional optimization algorithms.
Thus, EAs have been widely applied in robotics and automa-
tion [3], [4], industrial scheduling [5], resource allocation [6],
and other fields [7]-[9].

With the advent of cloud computing, big data, and artificial
intelligence, more and more optimization problems suffer
from the high dimensionality issue. In addition, a large
number of fitness evaluations (FEs) are often required before
satisfactory solutions can be obtained for EAs [10]. However,
each FE may consume a large amount of time or resources
for many real-world high-dimensional expensive problems
(HEPs), which is intractable and unacceptable [11], [12].
The efficiency of handling HEPs decreases rapidly as the
dimensions of problems continue to increase due to the
difficulty of constructing accurate surrogate models with
limited data samples [13], [14].

Rather than using surrogate models, generating high-
quality offsprings more efficiently provides an alternative
option to HEPs with limited computing resources. In other
words, if more promising solutions can be generated, the
use of expensive FEs can better lead to significant im-
provement in the efficiency and quality of finally obtained
solutions. Therefore, a core idea of solving HEPs can re-
sort to accelerating the reproduction of promising solutions.
Nevertheless, an extremely large search space associated
with complex HEPs makes it a big challenge to produce
high-quality solutions with limited computing resources. It
brings a chance to adopt dimension reduction techniques to
yield promising solutions in lower-dimensional spaces more
efficiently [10]. It is worth noting that EAs typically degrade
their performance when dealing with complex samples. As
one of unsupervised artificial neural networks, autoencoders
have been proven to be effective for realizing dimension
reduction [15], [16].

Due to successful applications of autoencoders in neural
network research communities [17]-[19], and, recently, EAs
[20], this work proposes an Autoencoder-based Multi-swarm
Gray wolf optimizer based on Genetic learning (AMGG)
to efficiently solve HEPs. In AMGG, autoencoders are
constructed by using data samples produced in previous
generations of evolution. Since the data samples are get-
ting closer to better solutions after several generations of
evolution, the trained autoencoder can implicitly capture
connections among decision variables, and efficiently learn
the distribution and landscapes of solutions. At the end of a
training process, AMGG can compress the original landscape

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 7265

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(IC

RA
) |

 9
79

-8
-3

50
3-

23
65

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

RA
48

89
1.

20
23

.1
01

61
29

9

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 02:03:50 UTC from IEEE Xplore. Restrictions apply.

information into a highly informative low-dimensional search
space, where promising solutions are more likely to be
generated than those in the original high-dimensional space.

AMGG includes a Multi-swarm Gray-wolf-optimizer
based on Genetic-learning (MGG), which includes three
proposed strategies to well balance exploration and exploita-
tion abilities. The first strategy, called a Dynamic subgroup
Number Strategy (DNS), divides the whole population into
many small subpopulations at an early stage and periodically
decreases the number of subpopulations, i.e., increases the
number of individuals in each subpopulation. With DNS, in
early stages of evolution, more and smaller subpopulations
motivate the whole population to enable more exploration.
Besides, at later stages of evolution, fewer and larger sub-
populations enable more exploitation. The second strategy
is a Subpopulation Recombination Strategy (SRS), based
on which subpopulations are recombined at each cycle of
DNS by using stagnation information of global optima. The
recombination in SRS provides each subpopulation access to
superior information shared by other subpopulations, which
is very beneficial for exploitation. The last strategy is a
Purposeful Detection Strategy (PDS) in which the historical
information of search processes is used to help subpopu-
lations jump from current local optima, thereby improving
the exploration ability. This work evaluates AMGG by using
six benchmark HEPs and optimal task offloading problem
in edge computing. Experimental results demonstrate that
it outperforms its peers in terms of search accuracy and
convergence efficiency.

II. PROPOSED FRAMEWORK

A. Overall Framework

Initialize population and evaluate fitness values of individuals

Termination condition

No

Yes

Train the autoencoder with individuals in current population

Output the trained autoencoder

Generate new population

Evaluate fitness values of individuals in the new population

Construct high-quality population by selecting individuals from

previous populations

Fig. 1. Training process of the autoencoder in stage 1.

To improve the ability of EAs to deal with HEPs, this work
proposes a framework of AMGG. As shown in Figs. 1 and 2,
AMGG includes two stages, i.e., initial population evolution
and autoencoder training, and a co-evolution process of two
subpopulations. In the first stage, the data samples (individ-
uals) selected from previous populations are used to train an
autoencoder. The data samples are accumulated during the

first few generations of evolution. Once a predefined number
of generations is reached, the autoencoder is trained by the
chosen individuals and obtained, and the final population
(P) in the first stage enters the second stage. In the second
stage, P is divided into two subpopulations according to
fitness value, i.e., P1 and P2. P1 is further encoded as P̌1
with the trained autoencoder. It is worth noting that P1 and
P̌1 are subpopulations with original and lower dimensions,
respectively. Then, P̌1 is adopted as an initial subpopulation,
which evolves with MGG to yield P̌

′
1 in the low-dimensional

search space. Next, P̌
′
1 is decoded to P

′
1 in the original search

space. Meanwhile, P2 directly evolves with in the original
space. MGG mainly consists of three proposed strategies to
balance exploration and exploitation abilities. In this way,
MGG is derived based on a multi-swarm framework that
cooperates with DNS, SRS, and PDS, respectively.

Based on fitness values of individuals in P1 and P2, elite
individuals of both subpopulations are selected and formed
as a new population P used in the next generation. If a
termination condition is not met, P is divided again, and the
information between P1 and P2 is exchanged dynamically.
In this way, the whole population is updated with AMGG to
avoid trapping into local optima and finding global ones.

B. Training of the Autoencoder

At the first stage, data samples are kept through several
generations of evolution. Better solutions are obtained as
individuals evolve, and therefore, the trained autoencoder
has the increasing probability of obtaining the compressed
representation of a region closer to global optima. The
autoencoder is adopted to explore search spaces of HEPs and
capture connections among decision variables. The pseudo
codes for training the autoencoder are given in Algorithm 1.

Algorithm 1 Training of the Autoencoder
1: Initialize P
2: Initialize d, aaa, AAA and CCC
3: Evaluate the fitness value f (xxxiii) of each xxxiii in P
4: Ω← /0
5: Initialize xxxααα , xxxβββ and xxxδδδ

6: g1←1
7: repeat
8: P′←MGG(P)
9: Evaluate the fitness value f (xxx

′
i) of each xxx

′
i in P′

10: for each individual i in P do
11: if f(xxx

′
i)< f(xxxi) then

12: xxxi← xxx
′
i

13: end if
14: end for
15: Update P
16: Ω←Ω∪P
17: g1←g1+1
18: until g1≤ĝ1
19: k← trainAutoencoder(Ω, ĝ1,d)
20: return k

In Algorithm 1, Ω denotes a database for archiving

7266

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 02:03:50 UTC from IEEE Xplore. Restrictions apply.

Input layer Hidden layer Output layer
Divide current population P into P1 and P2

Reconstruct P1 and P2

Evolve into with GG

Decode into with the trained

autoencoder

Encode P1 into with the trained

autoencoder

Evolve P2 into with MGGEvolve P2 into with MGG

Combine P1 and P2 into P

Termination conditionTermination condition
No

Yes

Output the best individual

Fig. 2. Multi-swarm coevolution in stage 2.

selected data samples in previous populations.
trainAutoencoder is a function in the Matlab Deep
Learning Toolbox [21]. d is a user-defined parameter
indicating the dimensionality of latent representation. A
sigmoid function is adopted, and a mean square error is
adopted as a loss function in the encoding and decoding
operations of the autoencoder.

C. Multi-swarm Gray-wolf-optimizer based on Genetic-
learning (MGG)

In MGG, the entire population is divided into many
equal subpopulations during initial evolutionary generations.
Each subpopulation adopts its own individuals to search for
better regions in parallel with other subpopulations. This
mechanism motivates more exploration. As the evolution
process proceeds, DNS is adopted to decrease the number of
subpopulations. SRS is adopted to share useful information
about a subpopulation during the search process, thereby
further improving the exploitation efficiency. Besides, when
each subpopulation is trapped in a local optimum, PDS is
used to help it jump out of the current local optimum, thereby
improving MGG’s exploration capability.

(1) Dynamic-subpopulation Number Strategy (DNS)
At the beginning of the evolutionary process, the entire

population is divided into many smaller subpopulations. The
number of subpopulations decreases accordingly, and the
size of each subpopulation gradually increases as evolutions
progress. At last, the number of subpopulations is reduced
to one, which means all subpopulations are merged into
one population. In DNS, many small subpopulations main-
tain the population diversity during the initial evolutionary
generations because the information spreads slowly within
a smaller-sized area, and many parallel evolving subpopula-
tions facilitate exploration. Conversely, gradual reduction in
the number of subpopulations is beneficial for exploitation in
the later evolutionary generations. Thus, DNS pushes search
from exploration to exploitation in the evolutionary process.

In DNS, we need to determine the number of subpopula-
tions, and when to adjust them. An ordered set of integers
N={n1,n2, · · · ,nk−1,nk}, where n1>n2> · · ·>nk−1>nk is de-
fined. Each element in N denotes the number of individuals

of a subpopulation. In this work, all subpopulations have the
same size, which means that the number of subpopulations
must be a factor in the population size. For example, if
population size is 30, the number of subpopulations (N�)
is selected from N={15,10,6,5,3,2,1}. Thus, the size (ρ�)
of the first subpopulation is 2, i.e., ‖N‖N� =2. At the final
generations of evolution, N� = 1 and ρ� = 30, respectively,
i.e., all subpopulations are merged into a single population.
We thus adjust the number of subpopulations every ζ FEs
where ζ=ĝ/‖N‖.

(2) Sub-population Reorganization Strategy (SRS)
In dynamic multi-swarm EAs, a stochastic recombination

scheme allows individuals to have a varying neighborhood
structure. Moreover, population of multi-swarm EAs is ran-
domly regrouped after a certain number (T∗) of successive
generations of stagnation in xxx∗. In MGG, T∗ is chosen as the
subpopulation regrouping criterion. In this case, it is possible
to regroup the entire population into multiple subpopulations
when xxx∗ keeps unchanged for T∗ generations. Since the
neighbor structure of each subpopulation is a ring model,
each individual in a larger subpopulation, including the best
one, may require more generations to fully extract useful
information from other individuals. The extent of the infor-
mation diffusion depends on the size of each subpopulation.
Thus, we set T∗=ρ�/2 in this work.

(3) Purposeful Detection Strategy (PDS)
To further increase the global search ability for com-

plex multi-modal problems, this work adopts some personal
historical information to guide xxx∗ to perform a purposeful
detection operator that helps the population to avoid trapping
into local optima. This work divides the search space of each
dimension d (1≤d≤D) of the problem into S small segments.
M d

s denotes the number of visits for segment s (1≤s≤S) of
dimension d. M d

s is used to help xxx∗ find promising positions
in each individual. xxxd

i denotes the value of dimension d of
xxxi. ξ d

s denotes segment s of dimension d. Then we have:

M d
s =M d

s +1, if xxxd
i lies within ξ

d
s (1)

To avoid that xxxd
∗ falls into the same segment for different

times, a tabu strategy is adopted in PDS. For example, if xxxd
∗

7267

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 02:03:50 UTC from IEEE Xplore. Restrictions apply.

has falled into ξ d
s , a binary variable td

s for ξ d
s is set to 1.

In this way, xxxd
∗ does not fall into ξ d

s unless td
s is reset to

0. When xxxd
∗ has falled into all segments, i.e., all td

k are 1,
they are all reset to 0. Then, for each dimension d, if xxxd

∗ lies
within a more visited segment ξ d

s , i.e., M d
s is larger than

M d
k (1≤k≤S, and k 6=s), xxxd

∗ is replaced by a random value
within a less visited segment ξ d

k where td
k is 0. Then, xxx

′
∗ is

yielded as a new version of xxx∗, and if f (xxx
′
∗)≤ f (xxx∗), xxx∗ is

replaced by xxx
′
∗. Then, td

s is set to 1. ∀ td
k =1, reset it to 0.

Algorithm 2 MGG

1: td
k←0

2: M d
s ←0

3: for m = 1 to ‖N‖ do
4: N�=nm
5: Divide P into N� subpopulations equally
6: for ϖ=1 to ρ� do
7: Pϖ = GG(Pϖ)
8: Update M d

s , xxx∗, T∗
9: Perform DNS

10: Perform SRS
11: Perform PDS
12: end for
13: Combine all subpopulations into P
14: end for

(4) Framework of MGG
By merging the above-mentioned components, MGG is

realized in Algorithm 2. The details of Gray-wolf-optimizer
based on Genetic-learning (GG) in Line 7 adopts genetic
learning of GA to produce an additional exemplar for each
individual i. GA and GWO are combined in a highly inte-
grated way. GG includes two major processes: the first for
generating exemplars with GA and the second for updating
each individual in GWO. In GG, each individual is updated
by xxxααα , xxxβββ and xxxδδδ , and its corresponding exemplar.

D. AMGG

AMGG is realized in Algorithm 3, where encode and
decode are Matlab functions[21].

(1) Population Splitting
Line 5 of AMGG performs population splitting to divide

P into P1 and P2. To avoid being trapped into local optima,
AMGG’s current population is split into two subpopulations
that evolve in a distributed and parallel manner. Individuals
in P are ranked according to their fitness values in ascending
order. The top ‖P1‖ individuals are put into P1, and other
‖P2‖ individuals are put into P2. The use of P1 aims
to compress its solutions into a low-dimensional space by
capturing the distribution characteristics of its solutions,
thereby guiding its evolution more efficiently. The use of
P2 aims to find optimal solutions around its current ones.

(2) Autoencoder-assisted Population Co-evolution
Line 6 in Algorithm 3 compresses each individual in P1

into its high-quality and low-dimensional one in P̌1 with the
obtained autoencoder k. The lower-dimensional individuals

Algorithm 3 AMGG
1: Initialize aaa, AAA and CCC
2: Evaluate fitness value f (xxxiii) of each xxxiii in P
3: Determine xxxααα , xxxβββ and xxxδδδ

4: for g←1 to 0.9∗ĝ do
5: Perform population splitting
6: P̌1←encode(k,P1)
7: P̌

′
1←GG(P̌1)

8: P
′
1←decode(k, P̌′1)

9: Update f (xxxiii) of each xxxiii in P
′
1

10: Select the best ‖P1‖ individuals from P1 and P
′
1 for

constructing P1
11: P

′
2←MGG(P2)

12: Update f (xxxiii) of each xxxiii in P
′
2

13: Select the best ‖P2‖ individuals from P2 and P
′
2 for

constructing P2
14: P←P1∪P2
15: end for
16: for g←0.9∗ĝ to ĝ do
17: P←MGG(P)
18: end for
19: Select xxx∗ from P, and update its fitness value f∗
20: return xxx∗

have more informative search space and help GWO to
quickly generate promising offsprings, thereby improving
the search performance of GWO. Then, P̌1 evolves with
GG in Line 7 to avoid stagnation and yield P̌

′
1. Due to

reduced dimensions, original fitness functions cannot be
directly used to evaluate P̌

′
1. Thus, Line 8 decodes P̌

′
1 into

high-dimensional P
′
1 with k. It is worth noting that there

are errors in the construction of k. However, they can be
viewed as the effect of uncertainty brought by k. Blessing of
uncertainty benefits EAs and guides the population towards
high-quality directions.

(3) Information Exchange

Line 9 in Algorithm 3 updates f (xxxiii) of each xxxiii in P
′
1.

Line 10 selects the best ‖P1‖ individuals from P1 and P
′
1

for constructing P1. P2 evolves into P
′
2 with MGG in Line

11. Line 12 updates f (xxxiii) of each xxxiii in P
′
2. Line 13 selects the

best ‖P2‖ individuals from P2 and P
′
2 for constructing P2.

Then, new population P is merged for the next generation by
combing P1 and P2 in Line 14, and therefore, the information
between them can be dynamically exchanged. P continues to
evolve with MGG in Lines 16–18. Line 19 selects xxx∗ from
P, and updates its fitness value f∗. Finally, Line 20 returns
xxx∗, which is a yielded final solution. In Algorithm 3, the
execution time is mainly owning to the for loop, which stops
after ĝ iterations. As shown in Lines 5-–14, the complexity
in each iteration of MGG is O(‖N‖N�ĝ2D). Therefore, the
complexity of Algorithm 3 is O(ĝ‖N‖N�ĝ2D).

7268

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 02:03:50 UTC from IEEE Xplore. Restrictions apply.

1 100 200 300 400 500 600 700 800 900 1000

Iteration number

0

5

10

15

20

25

F
it
n
e
s
s
 v

a
lu

e

GA GWO GLGWO GLPSO AMGG

(a) F1

1 100 200 300 400 500 600 700 800 900 1000

Iteration number

0

1

2

3

4

5

F
it
n
e
s
s
 v

a
lu

e

GA GWO GLGWO GLPSO AMGG

(b) F2

1 100 200 300 400 500 600 700 800 900 1000

Iteration number

0

5

10

15

20

25

F
it
n
e
s
s
 v

a
lu

e

GA GWO GLGWO GLPSO AMGG

(c) F3

Fig. 3. Fitness values of GA, GWO, GLGWO, GLPSO and AMGG in each iteration for F1–F3.

1 100 200 300 400 500 600 700 800 900 1000

Iteration number

0

200

400

600

800

1000

F
it
n
e
s
s
 v

a
lu

e

GA GWO GLGWO GLPSO AMGG

(a) F4

1 100 200 300 400 500 600 700 800 900 1000

Iteration number

0

200

400

600

800

1000

F
it
n
e
s
s
 v

a
lu

e

GA GWO GLGWO GLPSO AMGG

(b) F5

1 100 200 300 400 500 600 700 800 900 1000

Iteration number

0

200

400

600

800

1000

1200

F
it
n
e
s
s
 v

a
lu

e

GA GWO GLGWO GLPSO AMGG

(c) F6

Fig. 4. Fitness values of GA, GWO, GLGWO, GLPSO and AMGG in each iteration for F4–F6.

Fig. 5. 2D shapes, search histories, trajectories, fitness histories and convergence curves of F1–F6 with AMGG.

0 10 20 30 40 50 60 70

Distance (m)

0

1

2

3

4

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

J
)

AMGG GLPSO SAPSO GLGWO PSO GA SA

(a) Total energy consumed by all SMDs and edge
servers with respect to different d.

20 40 60 80 100 120 140 160 180 200

Number of SMDs

0

1

2

3

4

5

6

7

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

J
)

AMGG GLPSO SAPSO GLGWO PSO GA SA

(b) Total energy consumed by all SMDs and edge
servers with respect to different M.

1 100 200 300 400 500 600 700 800 900 1000

Iteration count

0

0.5

1

1.5

2

2.5

3

3.5

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

J
)

AMGG GLPSO SAPSO GLGWO PSO GA SA

(c) Evolutionary curves of total energy consump-
tion in each iteration.

Fig. 6. The real-life optimization problem in mobile edge computing systems.

III. PERFORMANCE EVALUATION

A. Experimental Setup

This section evaluates the proposed AMGG with typical
benchmark functions [22]. Following [23]-[27], the param-
eters of AMGG are set as follows. In the training of

Autoencoder in Algorithm 1, ‖P‖=35, ĝ1=1000 and d=5.
In addition, ‖P1‖=5 and ‖P2‖=30. In PDS, S=10. In MGG,
N={15,10,6,5,3,2,1}. In GG, ĝ2=1000, ω=0.04, and χ=7.
In AMGG, ĝ=1000.

To comprehensively evaluate the performance of AMGG,
we compare it with other algorithms with three types of

7269

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 02:03:50 UTC from IEEE Xplore. Restrictions apply.

popular test suites including six benchmark functions [28].
They can be divided into multiple types including unimodal
(F1–F2), multimodal (F3–F4), and composite ones (F5–F6).
Their detailed descriptions are given in [24], [25].

AMGG is executed 30 times on each function. AMGG’s
efficiency and effectiveness are verified and compared with
GA [26], GWO [29], genetic learning particle swarm op-
timization (GLPSO) [27]. We also compare it with an
improved variant of GWO, i.e., Genetic Learning GWO
(GLGWO) [30].

B. Experimental Results

Results in Figs. 3-4 demonstrate the performance of
AMGG in minimizing functions in comparison with its peers,
i.e., GA, GWO, GLGWO, GLPSO, and AMGG. It is shown
that AMGG provides very competitive results. The reason is
that it has autoencoder-based multi-swarm co-evolution with
GWO, and it has three designed strategies, including DNS,
SRS, and PDS, for improving global search ability in high-
dimensional solution space. Thus, AMGG jointly provides
avoidance of local optima, excellent exploitation, and strong
exploration abilities.

C. Convergence Behavior Analysis

Convergence behavior analysis of AMGG is provided
here. Following [31], significant changes are needed in
individuals over the beginning iterations of optimization. It
is helpful to guide a meta-heuristic algorithm to extensively
explore solution space of HEPs. For example, it is shown
in Fig. 5 that population of AMGG extensively finds high-
quality areas of solution space and investigates the most
promising one. Besides, the third subfigure for each function
in Fig. 5 presents the trajectory of the first individual whose
changes in the first dimension x1 are given. It is observed
that several significant changes exist in the beginning stage
of iterations, and they are reduced gradually as iterations
proceed. According to [31], this convergence behavior guar-
antees that AMGG finally converges to the optimal solution
in the solution space of each HEP.

D. Case study of a real-life optimization problem

To further evaluate the actual performance of our proposed
AMGG, a real-life optimization problem in mobile edge
computing systems [32]-[35] is used to verify AMGG. This
problem aims to minimize the total energy consumption of
all smart mobile devices (SMDs) and edge servers used in a
large-scale automated factory. The decision variables include
task offloading ratio, computational speeds of SMDs, and
data transmission power of SMDs [36].

Fig. 6(a) illustrates the total energy consumption com-
parison of AMGG, GLPSO, SAPSO [37], GLGWO, PSO
[38], GA and SA [39] with respect to different settings of
distance (d). It is shown that energy consumption increases
as d increases. In addition, it is shown that the energy con-
sumption of AMGG is the least among the seven algorithms
when d varies from 0 to 70. It is obvious from Fig. 6(a)
that the effect of increasing energy consumption of AMGG

with d is the smallest, which indicates that the optimization
efficiency and stability of AMGG are the best compared with
other algorithms. Fig. 6(b) shows the energy consumption
comparison of AMGG, GLPSO, SAPSO, GLGWO, PSO,
GA, and SA with respect to different numbers of SMDs
(M), respectively. It is shown that the energy consumption
of AMGG is the least among the seven algorithms when
M varies from 20 to 200. In addition, it is shown that the
energy consumption of AMGG increases nearly linearly, and
its reduction of energy consumption is the largest compared
with other algorithms as M increases.

Fig. 6(c) shows the total energy consumption of AMGG,
GLPSO, SAPSO, GLGWO, PSO, GA, and SA when they are
adopted to solve the real-life optimization problem, respec-
tively. It is clearly shown that the total energy consumption
of AMGG is the least among the seven algorithms in each
iteration. Specifically, the final total energy consumption
of AMGG is 0.20 J, which is lower than that (0.30 J)
of GLGWO and that (0.45 J) of GLPSO, respectively.
Furthermore, AMGG only needs 952 iterations to converge to
its final fitness value, while GLGWO and GLPSO need 971
and 973 iterations to converge to their final ones, respectively.
Thus, AMGG achieves the least energy consumption in much
fewer iterations than GLGWO and GLPSO, which verifies
the performance of AMGG. The reason is that AMGG uses
such strategies as DNS, SRS, and PDS, and autoencoder-
assisted multi-swarm coevolution.

IV. CONCLUSIONS

There are many high-dimensional expensive problems in
complex robotic systems. They often have a complicated
time-consuming process of fitness evaluation, which brings
a big challenge to yield promising solutions in a high-
dimensional search space. To handle this problem, this work
proposes an evolutionary optimization framework with an
embedded autoencoder that significantly advances a field of
high-dimensional expensive problems (HEPs). To generate
promising offsprings of HEPs, this work takes advantage of
the autoencoder for dimension reduction and embeds it into
a gray wolf optimizer (GWO) for the first time. Our newly
proposed strategies, i.e., Dynamic subgroup Number Strategy
(DNS), Subpopulation Reorganization Strategy (SRS) for
sharing useful information of different subpopulations, and
Purposeful Detection Strategy (PDS), are effective in improv-
ing the comprehensive performance of Multi-swarm GWO
based on Genetic-learning (MGG). A multi-swarm frame-
work named Autoencoder-based MGG (AMGG) is evaluated
by using three types of popular test suites including typical
benchmark functions and a real-life optimization problem.
Experimental results demonstrate that AMGG outperforms
such peers as genetic algorithm, GWO, genetic learning
GWO, and genetic learning particle swarm optimization in
terms of global search capability and accuracy, local optima
avoidance, and robustness. Its parameter tuning and selection
need future work by using Taguchi’s experimental design
method, grid search and other methods [40].

7270

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 02:03:50 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] H. Yuan, J. Bi, J. Zhang and M. Zhou, “Energy Consumption and
Performance Optimized Task Scheduling in Distributed Data Centers,”
IEEE Trans. on Systems, Man, and Cybernetics: Systems, vol. 52, no.
9, pp. 5506–5517, Sept. 2022.

[2] H. Yuan, J. Bi and M. Zhou, “Energy-Efficient and QoS-Optimized
Adaptive Task Scheduling and Management in Clouds,” IEEE Trans.
on Automation Science and Engineering, vol. 19, no. 2, pp. 1233–
1244, Apr. 2022.

[3] J. Bi, H. Yuan, K. Xu, H. Ma and M. Zhou, “Large-scale Network
Traffic Prediction With LSTM and Temporal Convolutional Net-
works,” 2022 International Conference on Robotics and Automation,
Philadelphia, PA, USA, 2022, pp. 3865–3870.

[4] S. Tuli, S. S. Gill, P. Garraghan, R. Buyya, G. Casale and N. R.
Jennings, “START: Straggler Prediction and Mitigation for Cloud
Computing Environments Using Encoder LSTM Networks,” IEEE
Trans. on Services Computing, vol. 16, no. 1, pp. 615–627, Feb. 2023.

[5] H. Yuan, J. Bi, M. Zhou, Q. Liu and A. C. Ammari, “Biobjective
Task Scheduling for Distributed Green Data Centers,” IEEE Trans.
on Automation Science and Engineering, vol. 18, no. 2, pp. 731–742,
Apr. 2021.

[6] H. Yuan, J. Bi and M. Zhou, “Multiqueue Scheduling of Heteroge-
neous Tasks With Bounded Response Time in Hybrid Green IaaS
Clouds,” IEEE Trans. on Industrial Informatics, vol. 15, no. 10, pp.
5404–5412, Oct. 2019.

[7] A. Favaro, etc., “An Evolutionary-Optimized Surgical Path Planner for
a Programmable Bevel-Tip Needle,” IEEE Trans. on Robotics, vol. 37,
no. 4, pp. 1039–1050, Aug. 2021.

[8] X. Guo, M. Zhou, S. Liu and L. Qi, “Multiresource-Constrained
Selective Disassembly With Maximal Profit and Minimal Energy
Consumption,” IEEE Trans. on Automation Science and Engineering,
vol. 18, no. 2, pp. 804–816, Apr. 2021.

[9] R. Patel, E. Rudnick-Cohen, S. Azarm, M. Otte, H. Xu and J. W.
Herrmann, “Decentralized Task Allocation in Multi-Agent Systems
Using a Decentralized Genetic Algorithm,” 2020 IEEE International
Conference on Robotics and Automation, 2020, pp. 3770–3776.

[10] S. Shan and G. G. Wang, “Survey of Modeling and Optimization
Strategies to Solve High-Dimensional Design Problems with Compu-
tationally Expensive Black-Box Functions,” Structural and Multidis-
ciplinary Optimization, vol. 41, no. 2, pp. 219–241, Mar. 2010.

[11] T. W. Simpson, A. J. Booker, D. Ghosh, A. A. Giunta, P. N. Koch,and
R. J. Yang, “Approximation Methods in Multidisciplinary Analysis and
Optimization: A Panel Discussion,” Structural and Multidisciplinary
Optimization, vol. 27, no. 5, pp. 302–313, Jun. 2004.

[12] Y. Jin, H. Wang, T. Chugh, D. Guo, and K. Miettinen, “Data-Driven
Evolutionary Optimization: An Overview and Case Studies,” IEEE
Trans. on Evolutionary Computation, vol. 23, no. 3, pp. 442–458,
Jun. 2019.

[13] T. Sonoda and M. Nakata, “Multiple Classifiers-Assisted Evolutionary
Algorithm Based on Decomposition for High-Dimensional Multiob-
jective Problems,” IEEE Trans. on Evolutionary Computation, vol. 26,
no. 6, pp. 1581–1595, Dec. 2022.

[14] R. G. Regis, “Evolutionary Programming for High-Dimensional Con-
strained Expensive Black-Box Optimization Using Radial Basis Func-
tions,” IEEE Trans. on Evolutionary Computation, vol. 18, no. 3, pp.
326–347, Jun. 2014.

[15] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality
of Data with Neural Networks,” Science, vol. 313, no. 5786, pp. 504–
507, Jul. 2006.

[16] Y. Yoo, C. Y. Lee and B. T. Zhang, “Multimodal Anomaly De-
tection based on Deep Auto-Encoder for Object Slip Perception of
Mobile Manipulation Robots,” 2021 IEEE International Conference
on Robotics and Automation, 2021, pp. 11443–11449.

[17] C. Rolinat, M. Grossard, S. Aloui and C. Godin, “Human Initiated
Grasp Space Exploration Algorithm for an Underactuated Robot
Gripper Using Variational Autoencoder,” 2021 IEEE International
Conference on Robotics and Automation, 2021, pp. 2598–2604.

[18] S. Ilager, K. Ramamohanarao and R. Buyya, “Thermal Prediction for
Efficient Energy Management of Clouds Using Machine Learning,”
IEEE Trans. on Parallel and Distributed Systems, vol. 32, no. 5, pp.
1044–1056, May 2021.

[19] D. Saxena, A. K. Singh and R. Buyya, “OP-MLB: An Online
VM Prediction-Based Multi-Objective Load Balancing Framework for
Resource Management at Cloud Data Center,” IEEE Trans. on Cloud
Computing, vol. 10, no. 4, pp. 2804–2816, Dec. 2022.

[20] M. Cui, L. Li, M. Zhou, J. Li, A. Abusorrah and K. Sedraoui, “A Bi-
population Cooperative Optimization Algorithm Assisted by an Au-
toencoder for Medium-scale Expensive Problems,” IEEE/CAA Journal
of Automatica Sinica, vol. 9, no. 11, pp. 1952–1966, November 2022.

[21] M. Beale, M. Hagan, and H. Demuth, “Matlab Deep Learning
toolboxT M User’s Guide: PDF Documentation for Release r2019a,”
The MathWorks, Inc, 2019.

[22] I. U. Rahman, Z. Wang, W. Liu, B. Ye, M. Zakarya and X. Liu, “An
N-State Markovian Jumping Particle Swarm Optimization Algorithm,”
IEEE Trans. on Systems, Man, and Cybernetics: Systems, vol. 51, no.
11, pp. 6626–6638, Nov. 2021.

[23] M. Cui, L. Li, M. Zhou and A. Abusorrah, “Surrogate-Assisted
Autoencoder-Embedded Evolutionary Optimization Algorithm to
Solve High-Dimensional Expensive Problems,” IEEE Trans. on Evo-
lutionary Computation, vol. 26, no. 4, pp. 676–689, Aug. 2022.

[24] J. Bi, H. Yuan, J. Zhai, M. Zhou and H. V. Poor, “Self-adaptive Bat Al-
gorithm With Genetic Operations,” IEEE/CAA Journal of Automatica
Sinica, vol. 9, no. 7, pp. 1284–1294, Jul. 2022.

[25] A. S. Nandan, S. Singh, R. Kumar and N. Kumar, “An Optimized
Genetic Algorithm for Cluster Head Election Based on Movable Sinks
and Adjustable Sensing Ranges in IoT-Based HWSNs,” IEEE Internet
of Things Journal, vol. 9, no. 7, pp. 5027–5039, Apr. 2022.

[26] J. Wang, M. Zhou, X. Guo and L. Qi, “Multiperiod Asset Allocation
Considering Dynamic Loss Aversion Behavior of Investors,” IEEE
Trans. on Computational Social Systems, vol. 6, no. 1, pp. 73–81,
Feb. 2019.

[27] Y. J. Gong, J. J. Li, Y. Zhou, Y. Li, H. S. H. Chung, Y. H. Shi and J.
Zhang, “Genetic Learning Particle Swarm Optimization,” IEEE Trans.
on Cybernetics, vol. 46, no. 10, pp. 2277–2290, Oct. 2016.

[28] S. Mirjalili, and A. Lewis, “S-shaped Versus V-Shaped Transfer
Functions for Binary Particle Swarm Optimization,” Swarm and Evo-
lutionary Computation, vol. 9, pp. 1–14, Apr. 2013.

[29] S. Mirjalili, S. M. Mirjalili and A. Lewis, “Grey Wolf Optimizer,”
Advances in Engineering Software, vol. 69, pp. 46–61, Mar. 2014.

[30] E. Daniel, “Optimum Wavelet-Based Homomorphic Medical Image
Fusion Using Hybrid Genetic–Grey Wolf Optimization Algorithm,”
IEEE Sensors Journal, vol. 18, no. 16, pp. 6804–6811, Aug. 2018.

[31] F. Bergh and A. P. Engelbrecht, “A Study of Particle Swarm Opti-
mization Particle Trajectories,” Information sciences, vol. 176, no. 8,
pp. 937–971, Apr. 2006.

[32] Y. Wang, M. Sheng, X. Wang, L. Wang and J. Li, “Mobile-Edge
Computing: Partial Computation Offloading Using Dynamic Voltage
Scaling,” IEEE Trans. on Communications, vol. 64, no. 10, pp. 4268–
4282, Oct. 2016.

[33] L. Ale, S. A. King, N. Zhang, A. R. Sattar and J. Skandaraniyam,
“D3PG: Dirichlet DDPG for Task Partitioning and Offloading With
Constrained Hybrid Action Space in Mobile-Edge Computing,” IEEE
Internet of Things Journal, vol. 9, no. 19, pp. 19260–19272, Oct. 2022.

[34] H. Yuan and M. Zhou, “Profit-Maximized Collaborative Computation
Offloading and Resource Allocation in Distributed Cloud and Edge
Computing Systems,” IEEE Trans. on Automation Science and Engi-
neering, vol. 18, no. 3, pp. 1277–1287, Jul. 2021.

[35] Y. Sahni, J. Cao, L. Yang and Y. Ji, “Multihop Offloading of Multiple
DAG Tasks in Collaborative Edge Computing,” IEEE Internet of
Things Journal, vol. 8, no. 6, pp. 4893–4905, Mar. 2021.

[36] T. K. Rodrigues, J. Liu and N. Kato, “Application of Cybertwin for
Offloading in Mobile Multiaccess Edge Computing for 6G Networks,”
IEEE Internet of Things Journal, vol. 8, no. 22, pp. 16231–16242, Nov.
2021.

[37] H. Yuan, J. Bi,W. Tan, M. Zhou, B. H. Li and J. Li, “TTSA: An
Effective Scheduling Approach for Delay Bounded Tasks in Hybrid
Clouds,” IEEE Trans. on Cybernetics, vol. 47, no. 11, pp. 3658–3668,
Nov. 2017.

[38] Y. Cao, H. Zhang, W. Li, M. Zhou, Y. Zhang and W. A. Chao-
valitwongse, “Comprehensive Learning Particle Swarm Optimization
Algorithm With Local Search for Multimodal Functions,” IEEE Trans.
on Evolutionary Computation, vol. 23, no. 4, pp. 718–731, Aug. 2019.

[39] S. Lyden and M. E. Haque, “A Simulated Annealing Global Maximum
Power Point Tracking Approach for PV Modules under Partial Shading
Conditions,” IEEE Trans. on Power Electronics, vol. 31, no. 6, pp.
4171–4181, Jun. 2016.

[40] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi and J. Wang, “Dendritic
Neuron Model With Effective Learning Algorithms for Classification,
Approximation, and Prediction,” IEEE Trans. on Neural Networks and
Learning Systems, vol. 30, no. 2, pp. 601-614, Feb. 2019.

7271

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 02:03:50 UTC from IEEE Xplore. Restrictions apply.

