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◆High-dimensional expensive problems are often encountered in the design 

and optimization of complex robotic and automated systems, and they 

suffer from a time-consuming fitness evaluation process. It is extremely 

challenging and difficult to produce promising solutions in high-

dimensional search space

◆This work proposes an evolutionary optimization framework with 

embedded autoencoders that effectively solve optimization problems with 

high-dimensional search space

◆Multiple subpopulations coevolve iteratively in a distributed manner. One 

subpopulation is embedded by an autoencoder, and the other one is guided 

by a newly proposed Multi-swarm Gray-wolf-optimizer based on 

Genetic-learning (MGG)

◆The proposed multi-swarm framework is named Autoencoder-based 

MGG (AMGG)

◆AMGG consists of three proposed strategies that balance exploration and 

exploitation abilities

◆AMGG is compared with several widely used algorithms by solving 

benchmark problems and a real-life optimization one

◆The results well verify that AMGG outperforms its peers in terms of 

search accuracy and convergence efficiency
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◆Evolutionary algorithms (EAs) are inspired by the evolutionary 

operations of living organisms in nature. EAs have been widely applied 

in robotics and automation, industrial scheduling, resource allocation

◆With the advent of cloud computing, big data, and artificial intelligence, 

more optimization problems suffer from high-dimensional expensive 

problems. Moreover, increasing landscape complexity brought by high 

dimension makes traditional EAs difficult to jump out of local optima

◆Autoencoders for dimension reduction have attracted extensive attention 

because they possess a reconstruction phase

❑ Training process of the autoencoder in stage 1

Training flow chart Training pseudo code

❑Multi-swarm coevolution in stage 2

Multi-swarm coevolution flow chart

AMGG pseudo code

AMGG flow chart

❑Conclusions

➢Novel evolutionary optimization framework with 

embedded autoencoders named Autoencoder-based 

Multi-swarm Gray-wolf-optimizer based on 

Genetic-learning (AMGG)

➢Superior to other state-of-the-art peers in terms of 

ability of global exploration, local exploitation, and 

local optima avoidance

❑Future Work

➢Multi-objective versions for high-dimensional 

constrained optimization problems

➢Parameter tuning and selection by using Taguchi’s 

experimental design method, grid search and other 

methods

➢More real-life optimization problems in other fields

Goal: Effectively solve optimization problems with high-dimensional search spaces

❑ Novel evolutionary optimization framework with embedded 

autoencoders named Autoencoder-based Multi-swarm Gray-wolf-

optimizer based on Genetic-learning (AMGG)

❑Multiple subpopulations coevolve iteratively in a distributed manner

➢ One subpopulation is embedded by an autoencoder

➢ The other one is guided by a newly proposed Multi-swarm Gray-wolf-optimizer 

based on Genetic-learning (MGG)

❑ Three proposed strategies that balance exploration and exploitation 

abilities

➢ Dynamic-subpopulation Number Strategy (DNS) for reducing the number of 

subpopulations

➢ Subpopulation Reorganization Strategy (SRS) for sharing useful information about 

each subpopulation

➢ Purposeful Detection Strategy (PDS) for escaping from local optima and improving 

exploration ability

❑ AMGG

❑ Fitness values of GA, GWO, GLGWO, GLPSO, and AMGG in each 

iteration for F1-F6

❑ 2D shapes, search histories, trajectories, fitness histories, and convergence 

curves of F1–F6 with AMGG

❑ The real-life optimization problem in mobile edge computing systems

❑ The real-life optimization problem in mobile edge computing systems

Total energy consumed 

by all SMDs and edge 
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Total energy consumed by 

all SMDs and edge servers 
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total energy consumption 

in each iteration
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