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Introduction

O Evolutionary algorithms
» Robots
» Computer vision

» Cloud computing

» Manufacturing scheduling problems




Introduction

O High-dimensional problems

[N OO Ne

» They have large search spaces
» They need a large number of function evaluations (FESs) to yield satisfactory solutions
» FEs in many real-world problems can be highly costly

» Some traditional EAs may easily trap into local optima
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Motivation %
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O High-dimensional complex optimization problems

Contributions

Goal: Solve high-dimensional complex optimization problems with fewer computational resources

1. This work proposes a Self-adaptive Teaching-learning-based Optimizer with an improved
Radial basis function model and a sparse Autoencoder (STORA)

2. STORA includes
» Self-adaptive Teaching-learning-based Optimizer (STO)
» Dimension reduction tool — Sparse autoencoder (SAE)

» Surrogate model — Improved radial basis function model (IRBF)






Proposed Framework

Self-adaptive Teaching-learning-based Optimizer (STO)

» Balance exploration and exploitation
® L earning factor that dynamically and linearly decreases as iterations continue

® Step size of individual j in iteration t: S7(¢)

» Prevent falling into local optima
® Knowledge acquisition factors (A; and 4,) in teaching and learning phase, respectively

® Disturbance of the teacher



Proposed Framework

Sparse autoencoder (SAE)

» Compress a high-dimensional space into a reduced one for facilitating evolution
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Proposed Framework

Improved radial basis function model (IRBF)

>

Discover main characteristics of a true model and then substitute a part
of the true model

Use fewer computational resources to evaluate individuals

Balance prediction accuracy and training time

1. K-means algorithm selects centers of a basis function

2. Genetic Learning Particle Swarm Optimization (GLPSO) finds

Initial clustering centers

GLPSO . R
| Initialize the population |
| Perform GA operations |<7
Evaluate fitness values
Learning Genetic
information information
Perform PSO operations

| Evaluate fitness values |

Yes

Take the globally optimal solutions as initial
clustering centers of the K-means algorithm

-t
-

Y
| Divide samples to the nearest cluster centers |

Yes

t; <3

No

| Take cluster centers as basis function centers |

!

| Construct RBF |
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Proposed Framework oy

Self-adaptive Teaching-learning-based Optimizer with an improved Radial basis function model anda '.S.R.2
sparse Autoencoder (STORA)

_— Initialize the Yes | Generate offspring Select and update the J
population with STO population

No

| Train the SAE

L]

-~ Split the population into Py and P, according
o to dynamic population allocation strategy
I
\] P, P,
Encode the - \(es -
sub-population Activate IRB| Train the IRBF

No

Y

L
c )
%) = 3 Generate sub- Generate sub- =
I')?l Generate sub- |3 % i offspring with offspring with é
D offspring with § e d STO STO >
3, STO 2 2 (=)
7 2 @ ict fi 3
= D = - Predict fitness ol
o ‘< |Add positions and values with IRBF 8
fitness values of 2
i i (]
Decode the sub- the odf;izglgsge into Select individuals
population for true model
evaluations
Y

Evaluate fitness values |

v

Select and update sub-population P,

v

Select and update sub-population P

y

Combine P, and P,

Yes







Experimental Results and Discussion

L Benchmark functions

BENCHMARK FUNCTIONS

Functions D Range
N 2
Fl(z)= Y (|z;4+0.5]) 100 [-100,100]
i=1
N N
F2(z)= > |zq|+ II |=4] 100 [-10,10]
i=1 i=1
Fi(x)=max; {|z;|, 1<i< N} 100 [-100,100]
N
Fid(x)= > [fc%—lﬂccs(iﬂfci}—klﬂ] 100 [-5.12,5.12]
i=1
N N
Fi(x)=—20exp | —0.2,| L4 T 22| —exp | 4 T cos(2max;) | +20+4e 100 [-32,32]
N . i N b
i=1 i=1
100 [-300.500]

ﬂl’
Fo(x)=418.9829D— >  =x;sin./|x;|
i=1
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Experimental Results and Discussion

L Results of benchmark functions

0 "9%.
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Iteration count
B>~ STORA has stable performance and it achieves the best search result over its peers
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Experimental Results and Discussion

O Real-world Computation Offloading Problem

Uplink .
- 1 s \
Downlink
Uplink Edge
9 .
2 (e«—| Computing
» Downlink Scheduler
. ® k
Uplink -
S
4 .
. Downlink )

Smart Mobile Devices Transmission
(SMDs) channels

Servers in the Serving AP
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Experimental Results and Discussion

O Real-world Computation Offloading Problem
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Conclusions

O Self-adaptive Teaching-learning based Optimizer with an improved Radial basis function model and a

sparse Autoencoder (STORA) for complex optimization problems

L STORA yields the best search result with the least time among all compared algorithms for benchmark

functions

O STORA vyields higher-quality solutions meeting all constraints than its typical peers for a real-world
computation offloading problem
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