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❑ Evolutionary algorithms

➢ Robots

➢ Computer vision

➢ Cloud computing

➢Manufacturing scheduling problems
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❑ High-dimensional problems

➢ They have large search spaces

➢ They need a large number of function evaluations (FEs) to yield satisfactory solutions

➢ FEs in many real-world problems can be highly costly

➢ Some traditional EAs may easily trap into local optima
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❑ High-dimensional complex optimization problems

1. This work proposes a Self-adaptive Teaching-learning-based Optimizer with an improved 

Radial basis function model and a sparse Autoencoder (STORA)

2. STORA includes

➢ Self-adaptive Teaching-learning-based Optimizer (STO)

➢ Dimension reduction tool – Sparse autoencoder (SAE)

➢ Surrogate model – Improved radial basis function model (IRBF)

Contributions

Goal: Solve high-dimensional complex optimization problems with fewer computational resources
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Self-adaptive Teaching-learning-based Optimizer (STO)

➢ Balance exploration and exploitation

⚫ Learning factor that dynamically and linearly decreases as iterations continue 

⚫ Step size of individual 𝑗 in iteration 𝑡: 𝑆𝑗(𝑡)

➢ Prevent falling into local optima 

⚫ Knowledge acquisition factors (𝐴1 and 𝐴2) in teaching and learning phase, respectively

⚫ Disturbance of the teacher
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Sparse autoencoder (SAE)

➢ Compress a high-dimensional space into a reduced one for facilitating evolution
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Improved radial basis function model (IRBF)

➢ Discover main characteristics of a true model and then substitute a part 

of the true model

➢ Use fewer computational resources to evaluate individuals

➢ Balance prediction accuracy and training time

1. K-means algorithm selects centers of a basis function

2. Genetic Learning Particle Swarm Optimization (GLPSO) finds  

initial clustering centers

Start

Initialize the population

Perform GA operations

Evaluate fitness values

Learning 

information

Genetic 

information 

Take the globally optimal solutions as initial 

clustering centers of the K-means algorithm

Perform PSO operations

Evaluate fitness values

Divide samples to the nearest cluster centers

Take cluster centers as basis function centers

Construct RBF

End

Yes

No

Yes

No

GLPSO



Proposed Framework

12

Self-adaptive Teaching-learning-based Optimizer with an improved Radial basis function model and a 

sparse Autoencoder (STORA)

Train the IRBF
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Experimental Results and Discussion

❑ Results of benchmark functions

STORA has stable performance and it achieves the best search result over its peers
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❑ Real-world Computation Offloading Problem
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Experimental Results and Discussion



❑ Real-world Computation Offloading Problem

STORA finds the best solution with least iteration counts under different latency requirements

17

Experimental Results and Discussion

Under different latency requirements
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❑ Self-adaptive Teaching-learning based Optimizer with an improved Radial basis function model and a 

sparse Autoencoder (STORA) for complex optimization problems

❑ STORA yields the best search result with the least time among all compared algorithms for benchmark 

functions

❑ STORA yields higher-quality solutions meeting all constraints than its typical peers for a real-world 

computation offloading problem
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Q & A

Thank you for your attention!
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