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Abstract—The advent of smart manufacturing in Industry
4.0 signifies the era of connections. As a communication pro-
tocol, object linking and embedding for process control unified
architecture (OPC UA) can address most semantic heterogeneity
issues. However, its semantics are not formally defined at the
application layer. To address the information silo problem caused
by semantic heterogeneity, an integration framework named
querying of ontology mapping-based OPC UA (QOMOWU) is
proposed. QOMOU extracts information models of OPC UA
servers into resource description framework triples and utilizes
Web Ontology Language for semantic enrichment and inference.
Then, an event class semantic similarity calculation (ECSSC)
method is proposed for device-type identification, enabling the
classification of semantically heterogeneous OPC UA devices.
The effectiveness of ECSSC is validated through queries with
the RDF query language (SPARQL) protocol in Apache Jena.
Experimental results demonstrate that ECSSC improves the
accuracy of device identification by approximately 7% com-
pared to benchmark device identification models. Specifically,
compared with graph embedding-based methods, QOMOU’s
query performance is approximately 13% higher, and its query
efficiency is 5% higher on average compared to both structured
query and extensible markup languages. Moreover, by employing
a keyword-matching algorithm, the query accuracy of the
existing heterogeneous data integration scheme is improved by
4% on average. This enhancement can boost the operational
efficiency of Internet of Things systems based on the OPC UA
architecture.

Index Terms—Integration framework, object linking and
embedding for process control unified architecture (OPC UA),
ontology, semantic heterogeneity, semantic similarity, syntactic
interoperability.
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I. INTRODUCTION

ITH the rise of Industry 4.0, communication between

devices has become increasingly important. To achieve
the Internet of Things, object linking and embedding for
process control unified architecture (OPC UA) emerges as
a unified architecture for communication in the Industry 4.0
open platform [1]. OPC UA is a unified communication
protocol that facilitates communications between devices and
systems from different vendors without knowing underlying
implementation details. Fig. 1 illustrates the overview of ver-
tical and horizontal communications. Vertical communication
may involve data transmission from lower level devices to
upper level management systems, while horizontal commu-
nication refers to interactions between devices or systems
at the same level. OPC UA standardizes communications
from the field to a unified information level, adding meta-
data to each data object to describe its type, structure, and
characteristics [2].

However, interoperability issues may still arise between
OPC UA products from different vendors, presenting chal-
lenges when integrating devices from various manufacturers.
In other words, OPC UA meets the requirements of syntactic
interoperability at the information layer. However, semantic
interoperability at the information layer remains undetermined.
Distributed data management and interoperability rely on
specified ontologies [4] between two or more machines at
this point. These ontologies can automatically and accurately
interpret the meaning of exchanged data and apply it to valu-
able objectives. For semantic interoperability, ontologies must
consider the metadata exchanged between different systems
and environments. Raising the level of semantic interoper-
ability can better achieve communications [5] between the
control level and the enterprise one. In these communications,
providing convenient human-machine interaction interfaces
enables even nontechnical managers to clearly understand
the operational status of factories or processes through the
interactive interfaces. This helps improve production effi-
ciency [6], reduce equipment integration and management
costs [7], and enhance management decision-making.

Semantic interoperability is the most significant obstacle
faced by widespread applications of the Internet of Things
and automation systems. Industry organizations are trying to
implement semantic data models that cover a wide range
of industries and systems [8], e.g., the Object Management
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Fig. 1. Overview of vertical and horizontal communications.

Group, Global Standards 1, and Schema.org. However, they
are based on a series of industry segments and are not
formally defined at the semantic level. In this case, the solution
to semantic interoperability is to increase the meaning of
data. Data from smart devices is stored and transmitted in
multiple formats, with inconsistent and nonstandardized nam-
ing conventions and limited descriptions to understand their
meanings. There is a considerable amount of literature research
on solving interoperability issues at the semantic level. In
the early days, manual construction of OPC UA information
models is used [9]. Still, this method is cumbersome, error-
prone, and costly, and it has obstacles to the widespread
application of different devices in industrial production. Based
on this, experts have mapped data formats used for exchange
in communication protocols to OPC UA information models
to achieve compatibility [10]. However, the above-mentioned
methods have not effectively solved interoperability at the
semantic level efficiently and cannot be widely promoted in
industrial production.

Based on the aforementioned analysis, this work proposes
an ontology mapping method named querying of ontology
mapping-based OPC UA (QOMOU) to tackle the semantic
interoperability problems in industrial production. The main
contributions are summarized as follows.

1) This work extracts the OPC UA information model
and converts it into a graph structure. Then, the
meaning of data is supplemented with Web Ontology
Language (OWL), providing clear structures and signif-
icant interpretation of data object meanings.

2) This work designs an event class semantic similarity cal-
culation (ECSSC) method to classify OPC UA devices.
It calculates the similarity of interpreted concepts among
data objects to confirm whether they belong to the same
category. Then, event ontology mapping is performed
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to support the integration of heterogeneous devices.
Finally, ECSSC is compared with benchmark device
identification models to verify its superiority.

3) This work validates QOMOU’s data management and
reasoning capabilities by inputting specific RDF query
language (SPARQL) queries into the Apache Jena
engine’s automatic reasoning mechanism. By comparing
the query times of datasets with different seman-
tic encapsulation techniques, the query efficiency of
QOMOU is validated. Experimental results demonstrate
that QOMOU achieves more accurate integration than
other graph embedding-based methods. A keyword com-
parison algorithm is utilized to validate QOMOU’s
query accuracy. Experimental results demonstrate that
QOMOU’s query accuracy outperforms its typical peers.

The remainder of this work is organized as follows.

Section II discusses related studies on semantic similarity
calculation and OPC UA semantic interoperability. Section III
shows the overall architecture of QOMOU. Section IV shows
the construction of semantic similarity calculation mod-
els. Section V conducts experiments to validate QOMOU.
Section VI concludes this work.

II. RELATED WORK
A. Semantic Interoperability for OPC UA

Current studies aim to enrich the meaning of data to improve
semantic interoperability. For example, Peifeng et al. [17]
proposed a semantic model that formalizes variables in
events and utilizes SPARQL for querying and accessing data.
However, this approach does not provide a clear solution for
dealing with heterogeneous data, and it does not validate the
accuracy of the query. Mahmoud et al. [18] converted the
OPC UA information model into Web Ontology Language
description logic, enabling automated reasoning in that lan-
guage. Wang et al. [19] implemented the transformation
and validation of the rules that define shape constraints in
the industry foundation class schema based on SPARQL,
achieving ontology enhancement. However, this method does
not consider the impact of complex network environments that
impact the query accuracy of trained models. Wang et al. [20]
used a data-driven approach to automatically infer semantics
of different devices, providing an ideal solution for issues
brought by such heterogeneity. However, this method lacks
high-quality OWL datasets and does not consider the long
query time of models. To address the aforementioned issues,
this work aims to convert the OPC UA information model to
OWL ontology, thus improving the model’s query accuracy.

B. Ontology Mapping Semantic Similarity Calculation

As an emerging text-processing technology, ontology and
the semantic Web provide structured and explicit knowledge
representation in the conceptual form. Kakad and Dhage [11]
defined event ontology mapping, upon which they propose
a semantic similarity calculation model for event ontology
mapping. It enables richer semantic mappings between event-
based information. However, the semantic computation is
overly complex, resulting in excessively long mapping times.
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Fig. 2. Conceptual model validation of the integration of OPC UA with ontology, integrating semantic Web technologies with OPC UA for sensor discovery
and implementing a semantic access layer to harness the potential of ontologies without disrupting existing OPC UA standards.

Hao et al. [12] aligned ontologies by introducing ontology
input and structures. However, this work does not consider
the issue of accuracy decline caused by imbalanced sample
distribution. De et al. [13] contributed to source descriptions
at the dataset, feature, attribute levels, and the integration
of source ontology with the specific dataset. However, this
work only considers similarity calculations between words and
does not incorporate the relational structure within the ontol-
ogy. Unlike the aforementioned studies, this work combines
semantic similarity calculations of event class nodes with node
relationships to balance the text diversity, thereby addressing
the identification of newly accessed devices.

C. Querying and Answering Systems

The querying and answering system is widely applied
in knowledge graphs, providing a method for delivering
formalized prior knowledge. It is a machine-interpretable
model of implicit knowledge that cannot be obtained through
analysis. Gutiérrez et al. [14] utilized ontology-based data
access to access heterogeneous manufacturing data from
knowledge graphs, representing concepts and attributes related
to surface mount manufacturing technologies. They execute
SPARQL queries to answer analytical queries about pro-
duction and faults. However, this approach only applies to
relational databases accessed via structured query language

(SQL) queries. Steindl et al. [15] proposed a novel ontology-
based approach to access OPC UA data through conventional
SPARQL endpoints and custom property functions (CPFs).
These CPFs extend the SPARQL query evaluator of the
Apache Jena Framework with customized codes executed
when CPFs are called in a query. However, due to triple store
overload, OPC UA data is stored in a separate database and
can only be accessed on demand. To address the overload
issue, Mathias et al. [16] suggested that read-only queries
should directly access the database, as accessing it through
the OPC UA server may increase the computational overhead
on the programmable logic controller (PLC). Unlike the above
studies, this work adopts a querying and answering system
to apply the integrated graph-structured OPC UA device
information model.

III. CONCEPTUAL FRAMEWORK

To address the problem of semantic heterogeneity in device
integration in current production sites, this section proposes a
heterogeneous device integration and application architecture
with OPC UA based on graph structures. The proposed
architecture is shown in Fig. 2. It consists of four main layers:
1) the field layer; 2) the heterogeneous device integration layer;
3) the verification and reasoning layer; and 4) the application
layer.
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A. Field Layer

The field layer consists of various devices in the production
space. In this architecture, the OPC UA server information
uses the simulated OPC UA sample server proposed by
UMAIT [25], including information models for machine
tools, woodworking tools, robotic arms, etc. Field devices
communicate through a unified protocol to ensure effective
execution of the production line. When new heterogeneous
devices are introduced, device classification is required to
achieve integration for these heterogeneous devices.

B. Heterogeneous Device Integration Layer

This layer primarily processes data collected from devices.
This heterogeneous information is scattered and unstructured,
requiring device-type identification. However, identifying
types only based on names is challenging due to the dispersed
nature of the information. Therefore, the data is semanti-
cally expanded with the OWL technology [26]. To better
align with specific requirements of OPC UA-based industrial
environments, a custom ontology is developed based on the
existing structured dataset. This ontology defines domain-
specific concepts, relationships, and attributes, enhancing
semantic representation and interoperability. ECSSC treats
each semantically expanded OPC UA device as an event class,
performs convolution operations to extract feature values, and
identifies the device type. Finally, the data is added to the
OPC UA address space, enabling the automatic construction
of the OPC UA information model. Several instances of the
final OPC UA information model are shown in Fig. 3.

C. Verification and Reasoning Layer

This layer plays a significant role as both a validation
layer for the previous level and an interface layer for the
next level. It is primarily responsible for verifying the correct
integration of heterogeneous OPC UA devices and checking
the address space of the OPC UA information model. The
automatic reasoning tasks related to the graph structure are
more focused on providing interfaces for the application layer.
The three reasoning tasks are fact prediction, link prediction,
and query answering. The problem format of a graph struc-
ture is generally (s, r, ?), e.g., (Posindirect, Belong, 7). Link
prediction involves identifying implicit relationships in a graph
structure, i.e., relationships that are not explicitly modeled.
Fact prediction involves predicting whether a statement is true,
such as (PosIndirect, Belong, Variable). Both link prediction
and query answering can utilize fact prediction algorithms.
However, due to the overwhelming number of candidate
entities in the OPC UA information model, and the high-
dimensional matrix and vector computations in the embedding
model, the high computational cost of evaluating all candi-
date entities and prediction algorithms makes the verification
process excessively expensive [27]. Therefore, link prediction
and query answering become the focus of this layer, and a
reasoning mechanism is proposed that can effectively query
the correct answer without incurring the cost of evaluating all
nodes and relationships.
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D. Application Layer

This layer builds on the verification and reasoning layer to
provide more advanced services, offering a unified application
interface for clients. Services can be improved according to
different business needs, such as production execution systems,
and companies can develop other applications to assist with
production planning. In addition, cases related to handling
equipment failures in production from the previous layer
can also be applied at this level. By combining real-time
collected disruption information with existing data, production
plans can be adjusted appropriately to implement strategy
formulation. Interruption information is collected by acquiring
equipment operation logs and analyzing downtime, alerts, or
abnormal event records to identify production interruptions.
Additionally, by combining multiple data sources (such as
sensors, logs, and manual feedback) for cross-validation,
misjudgments caused by anomalies in a single data source
can be avoided. For example, a production interruption is
confirmed only when an abnormal sensor signal aligns with
equipment log records.

IV. DEVICE-TYPE IDENTIFICATION MODEL

To achieve semantic heterogeneity in OPC UA device
integration, an ECSCC-based device-type recognition model
is proposed. Inspired by Algergawy et al. [24] on calculating
semantic similarity for various events, this approach combines
convolutional neural networks (CNNs) with calculating event
class similarity and structural similarity. After classifying OPC
UA device types, it completes the OPC UA information model
to enable automatic construction.

Different device components and attributes have significant
differences, but components and attributes of the same type of
device share common characteristics. The OPC UA foundation
provides reference models for different types of devices. An
existing device-related knowledge base and address space
are built in the basement. This involves categorizing nodes
in the information model of different machines into six
types: 1) Variable; 2) VariableType; 3) Object; 4) ObjectType;
5) DataType; and 6) Method. Each OPC UA information node
is treated as an event class when a new device is connected.
By leveraging the existing knowledge base of devices, the
type of the newly connected device is identified, enabling
the automatic construction of the information model graph
structure.

A. Event Class Semantic Similarity Calculation

The first step in implementing CNN is to construct a text
embedding matrix. A given text sequence of length n can be
represented as an embedding matrix R = [r%, r%, T,
ri € R!*4 is the character embedding for the character i, with
an embedding dimension of d. In addition, if the text length
exceeds n, it is truncated; otherwise, it is padded with zeros.
Then, the embedding matrix R is subjected to a convolution
operation, and local information features are extracted with
convolution kernels. The feature a; can be obtained as

aj = f(k - riiph—1 + b) )
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Fig. 3. Example instance nodes of OPC UA servers.

where f(-) denotes the activation function. ¢;;; + 51 represents
the embedding submatrix extracted from the row i to the row
i+ h—1 of C, while retaining all columns. /# denotes the window
size, k € R is a filter that extracts different feature maps,
and b € R is a bias term. After the matrix is scanned by the
convolution kernel, a feature map a = [ay, a2, ..., dn—ph + 11
is generated. To simplify the feature description, representative
features need to be further extracted. The 1-MAX pooling
strategy is used to select the maximum value from the feature
map a obtained by the convolution layer, i.e.,

2

where a’ represents the maximum value of feature map a. The
features obtained in the pooling layer are concatenated to form
a feature vector. This feature vector contains different types
of information for calculating semantic similarity.

Finally, the feature vector is fed into a fully connected layer
to complete device classification. The process of calculating
semantic similarity is detailed as follows. Event class is an
abstract concept that can be defined as a six-tuple consisting of
action a, object o, the time of event ¢, the location of event p,
and the state of event s. It also can represent a group of events
with common characteristics, e.g., C1 = {e11, e12, ..., e1,} and
Cr, = {ez1, €1, ..., ey}, where n and m denote the number
of elements of Cj and C», respectively. A classic set similarity
algorithm is proposed to calculate ontology similarity. The
similarity of C| and C; is denoted as s,(Cq, C»), i.e.,

1 n m
$0(C1,C2) = — 3} " se(Cri, C)

i=1 j=1

d = max(a)

3)
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where Cy; denotes element i in C; and Cy; denotes element j
in Cy. 5.(C1, C3) denotes the element similarity of C and C».
It is calculated by multiplying the syntactic and semantic
similarities with their respective weights and then adding them
together, i.e.,

5¢(C1, C2) = 04°54(C1, C2) + 0p5:(C1, C2) 4

where o, and o; are the weights of syntax and semantic simi-
larity, and o4 + o; = 1. Moreover, s,(C1, C2) and s;(C1, C2)
denote the syntactic and semantic similarity between C; and
C», and they are obtained from (5) and (6), respectively

2371 X ¢(Cui, Cy)
(Cy) + I(C)

where ¢(Cy;, Cyj) is the longest common substring between
two elements Cy; and Cy;, and I(-) denotes the length of an
event.

In calculating semantic similarity, it is important to under-
stand the concept of sememes. The smallest semantic units in
language serve as basic elements composing vocabulary and
linguistic meaning. The formula for calculating the similarity
of semantics is given as

|Ecier| [ i1 2jm15q(Chis Cap)
C1.Cy) = :
$C Q) = T el

54(C1, C2) = &)

(6

|PCl<—>CZ|

where ¢; and ¢ are two sets of sememes. |ci| and |cp| are
the numbers of sememes in the sets. |E¢ «,| is the number
of sememes with semantic relationships in two sets. [P, ¢, |
is the number of pairs from semantic sets with semantic
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Fig. 4.
information model and information model after OWL knowledge graph.

relationships. Finally, the semantic similarity between C; and
C; is denoted as s(Cy, C3), which is given as

Y oGa)sa(C, Ca)

defo,e,q,t}

(7

where 7, denotes the degree of impact of each part on the
entire system. The final similarity is calculated by multiplying
the values of (3)—(6) by their respective weights and then
summing them together. To avoid biases caused by human
factors, QOMOU adopts a sigmoid function o (x) to calculate
the weights, i.e.,

1
1+ e—5(x—a)
where x is the value of syntactic similarity or semantic
similarity, —5 is a constant that controls the smoothness of the
curve, which helps to avoid the generation of outliers, and «

is a parameter that controls the symmetric center position of
the curve.

®)

ox) =

B. Event Class Structure Similarity Calculation

An event class ontology consists of event class nodes
and relationships. The calculation of event class similarity
ultimately focuses on structure. The structural similarity is
defined as sy, (S1, S2), where S; is a set of event classes. Its
structure is circular, with S as the center and r as a semantic
radius. In S7, each node is at a distance p from Sy and p < r.

Information on the industrial dataset and OWL-based information model. (a) OPC UA devices and data division for identification. (b) Data of

The nodes in S are represented as a triple (< pre_S, rel,
S >), where pre_S denotes the previous node, rel denotes the
relationship between the two nodes, and S represents the event
class of the current node.

The process for calculating the structural similarity of
event classes is shown in Algorithm 1. A direct neighbor
node refers to retrieving all neighboring nodes with a path
length of 1. The final semantic similarity is obtained as
Sy = max{s(Cy, C2), s5r(S1, S2)}. The device type is deter-
mined after obtaining the maximum similarity between the
OPC UA device and the preconstructed information model.

The SoftMax function is used in the fully connected layer
to perform classification, and the cross-entropy loss function
(CEL) is employed to minimize the gap between the prediction
results and the ground-truth classes. The value with the highest
computed prediction is chosen as the final prediction result.
The CEL function is shown as follows:

| M
L= MZLi = M;cgl)’iclogsf

l
where M denotes the number of device types. y;. represents
a delta operator that is 1 when the actual device category i
matches category c, and 0 otherwise. Sy is the final similarity
of the device. The form of the loss function is a cross-
entropy loss, which measures the difference between the
model output similarity Sy and delta operator y;.. The model
adjusts its parameters to gradually reduce the value of the

(C))
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Algorithm 1: Calculation of Structure Similarity

Input: S, 1, similarity threshold value (#v)
Output: s5,-(S1, S2).

1 Initialize parameters and p = 1, r = 5, 54,(51, 52) = 0.
Record the maximum similarity between nodes and
ms = (0. Choose a node from S2 as pre_A and select a
node from S1 as pre_B. As a temporary variable for
storing similarity values and sim = 0

2 while p < r do
3 Get all direct neighbor nodes of pre_A as nodesA
4 Get all direct neighbor nodes of pre_B as nodesB
5 for nodeA in nodesA do
6 ms =0
7 for nodeB in nodesB do
8 if tv < s(nodeA, nodeB) and
ms < s(nodeA, nodeB) then
9 sim = s(nodeA, nodeB) /p
10 if nodeA.rel==B.rel then
1 | sim = simx(1 + (p/r«10))
12 end
13 ms = s(nodeA, nodeB)
14 end
15 end
16 Sstr(CS1, CS2) = $55r(CS1, CS2) + sim
17 end
18 p=p+1
19 end

loss function. During the training process, the model updates
the input parameters through the back propagation algorithm,
the accuracy improvement resulting from the loss reduction is
demonstrated in the next section through experimental results
comparing QOMOU with other state-of-the-art embedded
models.

V. EXPERIMENTAL RESULTS

This section evaluates the performance of ECSSC in the
OPC UA device-type identification model and compares it
with benchmark models. To validate QOMOU, this sec-
tion first validates the semantic similarity calculation model
and verifies the OPC UA information query model. The
validation of the information query model needs to discuss the
relationship between devices and their components, as well as
the ability to identify abnormal situations in device events and
handle these anomalies.

A. Industrial Dataset

To the best of our knowledge, no existing datasets are avail-
able for this experiment. Therefore, we construct four datasets
for experiments, which are derived from node sets of the offi-
cially published OPC UA companion specification.! It includes
data from 15 typical devices in the industrial manufacturing
sector, categorized into six classes, including computer numer-
ical control machine tools (CNC), industrial robots (IRs),

1 https://github.com/OPCFoundation/UA-Nodeset
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TABLE I
STATISTICS OF DATASETS

Dataset Companion Spec. Ent. R. Trip.
FES - 147 43 1063
UADS DI, PLCOpen 270 39 830
FDSO DI, FDI, etc. 189 47 793
FDST DI, CNC, etc. 196 36 1312

sorting machine (SOM), marking machines (MAMs), patching
machine (PM), and scribing machine (SCM), each following
its respective OPC UA specification. According to ISA8S,
these information models can also be considered part of
the physical models. Thus, it can be transformed into OWL
with the source tool Lions.”? The resulting graph structure
contains extensive process descriptions and technical resource
information. These descriptions can provide detailed descrip-
tions of different device nodes, thereby providing numerical
values for subsequent event similarity calculations. Then,
these words are randomly grouped into word sequences, each
representing a sample. Fig. 4(b) shows the data preview of the
OPC UA information model and that after being structured
into a graph. Finally, the samples are labeled according to
the device type, resulting in 4000 samples. Fig. 4(a) shows
the training set, the validation one, and the test one are
randomly split in a ratio of 6:2:2. Companion Spec. represents
the associated specifications, Ent. indicates the number of
unique entities, R. denotes the number of relationships, and
Trip. refers to the total number of triples in the dataset.
The four datasets include FAPS Empty Server (FES), Unified
Automation Demo Server (UADS), FAPS Demo Server One
(FDSO), and FAPS Demo Server Two (FDST). Among them,
UADS follows the specifications associated with DI and
PLCOpen. FDSO adheres to DI, FDI, ISA95, AutomationML,
AutoID, and MachineVision. FDST complies with DI, CNC,
Robotic, PackML, IOLink, and Plastics Rubber.

For validating the integration framework, these node sets
primarily specify the type system of the information model
and rarely define concrete instance examples. Therefore, we
adopt extended triple datasets generated by ECSSC. Table I
presents the statistical information of the datasets.

B. Experimental Results

To verify the effectiveness of the event class similarity
calculation model, the nodes in the information model are
categorized into six classes and visually distinguished by
different colors. By crawling the nodes and their neighboring
ones in the graph, the text of each data record is converted into
vector representations to construct a feature matrix. Clustering
analysis is then performed with the feature matrix to obtain
cluster labels. Then, principal component analysis (PCA) is
applied to reduce the dimensionality of the high-dimensional
similarity matrix, and the results are projected into a 3-D space
for visualization. It is shown in Fig. 5 that the distribution of
six classes of nodes is scattered. Thus, the heterogeneity of

2https:// github.com/hsu-aut/lion
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Fig. 5. Clustering status of the information model before similarity
calculation.

each device is not resolved, and it is necessary to partition
nodes of each device.

The computed similarity values are added to the feature
matrix as parameters, and the state after clustering the matrix
is shown in Fig. 6. It is shown that the states of nodes in
the graph are reasonable and similar concepts tend to form
clusters. OPC UA nodes of the same type cluster together. For
example, nodes belonging to the variable are marked by the
blue color and are closer in feature distance.

After verifying the effectiveness of ECSSC, the performance
of its device-type identification model is evaluated by compar-
ing it with four other device-type identification models. Since
ECSSC incorporates semantic similarity as an improvement
factor in the enhanced CTCNN model, its recognition accuracy
is compared with other classic TextRNN models and their
variants. To provide a clearer baseline comparison, several
benchmark models, including TextRNN and vanilla CNN,
are selected for evaluation. TextRNN captures sequential
dependencies in text data with recurrent neural networks,
while CNN-based methods are leveraged to extract local
features through convolutional operations. These models are
adopted as fundamental baselines to highlight the performance
improvement achieved by ECSSC.

TextRNN [30]: CNN is replaced by bidirectional long short-
term memory (BiLSTM), which extracts features from the
input character embeddings with BiLSTM, and the SoftMax
function is used to classify OPC UA device types.

TextRNN_Att [31]: An attention mechanism is additionally
added based on TextRNN.

DPCNN [32]: Tt combines CNN with a deep pyramid
structure, enabling it to capture long-distance dependencies in
the device-type text.

CTCNN [33]: Tt creates an alphabet through a corpus and
randomly initializes character embeddings to form an embed-
ding matrix. The matrix undergoes convolution operations to
obtain feature maps. Finally, the features are concatenated to
form a feature vector. This feature vector is fed into a fully
connected layer for device classification.

Three evaluation metrics are used to evaluate the
performance of the device-type recognition model, including
Precision (P), Recall (R), and Fl-score (FI), which are
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Fig. 6. Clustering status of the information model after similarity calculation.

TABLE I
NOTATIONS OF TP, FP, AND FN

Actual result Prediction result

0 1
0 True Negatives (TN)  False Positive (FP)
1 False Negative (FN) True Positive (TP)
TABLE IIT

PERFORMANCE COMPARISON OF DEVICE-TYPE IDENTIFICATION MODELS

Models TN Fp P R F1
TextRNN 1850 450  0.8326  0.8452  0.8322
TextRNN_Att 1920 280 09192 09162 09162
DPCNN 1930 260  0.9237 09217  0.9238
CTCNN 1980 120 09736 09657  0.9821
ECSSC 1995 90 09842  0.9913  0.9917

calculated as follows:

TP
P=—— (10)
FP + TP
TP
R=—— (11
FN + TP
PxR
Fl =2x (12)
P+ R

where the meanings of TP, FP, and FN are shown in Table II.
The experimental results are shown in Table III. To pro-
vide a more comprehensive evaluation of the classification
performance, TN and FP results are given in Table III.
With these additional metrics, the analysis is not limited
to Precision, Recall, and F1 Score. Still, it offers a deeper
understanding of identifying device types correctly while min-
imizing classification errors. They demonstrate that ECSSC
achieves the highest accuracy in device identification. The
confusion matrix of ECSSC, as shown in Fig. 7, verifies that
the proposed model accurately identifies OPC UA devices.

C. Model Capability Validation

To answer the question “which variables belong to a certain
machine?,” in an OWL model without semantic reasoning, a
significant issue arises where the components in the third level
in Fig. 3 cannot be categorized into the first-level equipment
types. This means that the relationships between superclasses
and subclasses [34] must be manually annotated, resulting in
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Fig. 7. Confusion matrix of ECSSC.

SELECT ?variable ?nodeID ?variableName ?variableType ?machineIlD

?machineName

#Querying information from OWL

WHERE {

2urnid owl:sameVariableAs OpcSS:AllMachines.

#Selecting variables from OPC UA machines.

?machine OpcUa:hasComponent: ?variable.

?machine OpcUa:browseNames ?machineName.

?variable OpcUa:belongTo ?machinelD.

?variable OpcUa:browseName ?variableName.

?variable OpcUa:typeDefinition ?variableType.

#Filtering variable types.

FILTER( ?variableType = “IdentificationType” ||?variableType =
“ProductionType” || ?variableType = "MonitoringType”).

#Querying from a Specific Time Point

Mode OpcUahistValues ( ?Time ?Value 2024-03-16T08:00:00Z”
72024-03-28T08:20:00Z”).

LIMIT 5

Listing 1. Query statement-part A.

increased data volume and difficulty in querying. Therefore,
class hierarchy inference and reverse reasoning are introduced
to ensure query completeness. The query statement is shown
in Listing 1, and the OWL reasoning is shown in Listing 2.
The part ownership relationship query results are shown in
Fig. 8. The results demonstrate that with the OWL inference
engine, subclasses within OPC UA nodes can be automatically
recognized as superclasses without explicitly specifying the
relationships among them.

When the device encounters an abnormal event, the archi-
tecture queries the issue and raises an abnormal alarm. The
code for querying anomalies is displayed in Listing 3, and the
detection results are shown in Fig. 9. The results demonstrate
that the architecture can remind the staff to switch the mode
from automatic to manual, which helps prevent an abnormal
situation during production.

D. Efficiency and Accuracy of Queries

In this section, the experiments on the query efficiency
and query accuracy of QOMOU are conducted to validate
its effectiveness [35]. SQL datasets with and without format
wrapping and Extensible Markup Language (XML)-based
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@prefix :<http://www.zenodo.org/records/.com# > .

@prefix owl: <http://www.zenodo.org/2002/07/owl#> .

@prefix rdf: <http://www.zenodo.org/1999/02/22-rdf-syntax—ns#> .

@prefix xsd: <XML Schema> .

@prefix rdfs: <http://www.zenodo.org/2000/01/rdf-schema# > .

#Subclass and Superclass Reasoning

[ruleBelongtoMonitoringType: (?p :hasMonitor ?m) (?m :hasTool ?g) (?g
:hasBranch ?q) (?p browseName: "BasicAMMachine’)—> (?q
rdf:belongto :p)]

#Inverse Reasoning of Inclusion Relationship

[ruleInverse: (?p :hasVariable 7m) —> (?m :belongTo 7p)]

Listing 2. OWL reasoning.

QUERY RESULTS

= Raw Response *

Showing 1 to 5 of 5 entries

a s & belongTo a
a
v

variable v nodeIDé variableName ¢ variableType g machineName ¢

<https://zenodo.

org/records/633 " " " " . R " "BasicWoodWorking
1 6935#monitor/5 59022 'Manufacturer ProductionType' NS19’ B
9022>
<https://zenodo.
g Or0recordsl33 ugezeg  voperationMode”  “MonitoringType®  "NS26'  "BasicAMMachine®
6935#monitor/5 P 9iyp
8764>
<https://zenodo
orglrecords/633 ) )
3 "59489" "NodeVersion" "StateType" "NS26" "BasicAMMachine"

6935#monitor/5
9489>

Fig. 8. Query results of the part ownership relationship.

QUERY RESULTS

139 Raw Response 3

Showing 1 to 3 of 3 entries

event % eventType % value % timestamp 9 statusCode %
<https://zenodo.org

1 /records/6336935# "Alarm" "false" "20:14:26" "good"
event/59031>
<https://zenodo.org

2 /records/6336935# "CurrentMode" "AUTOMATIC" "20:14:28" "good"
event/59026>
<https://zenodo.org

3 /records/6336935# "Error" "false" "20:14:28" "good"

event/59029>

Showing 1 to 3 of 3 entries

Fig. 9.  Query results of the part anomalies.

datasets are selected to compare query efficiency. Moreover,
4000 OPC UA server data samples are extracted, with query
times recorded for every 300 pieces of data. Fig. 10 compares
query times for different semantic Web technologies. It is
shown that the query time of QOMOU is smaller than that
of SQL and XML semantic integration schemes, validating its
effectiveness.

To compare the performance of QOMOU, it is evalu-
ated against graph embedding-based methods. Four different
embedding models based on different embedding assumptions
(TransE [37], DistMult [38], ComplEx [39], and HolE [40])
are utilized, and hyperparameter optimization with grid search
is conducted for each embedding model to identify the
optimal training parameters for each dataset. Since these four
classic models represent different embedding assumptions and
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TABLE IV
COMPARISON OF QUERY—ANSWERING PERFORMANCE BETWEEN QOMOU AND GRAPH EMBEDDING-BASED METHODS
Dataset Score Model
TransE DistMult ComplEx HolE QOMOU
MRR 70 76 78 52 80
FES @10 79 89 87 64 86
@3 73 84 83 55 87
@1 67 68 73 46 80
MRR 77 73 79 60 80
@10 84 88 89 65 88
UADS
@3 80 81 87 61 89
@1 73 63 84 57 87
MRR 88 77 80 49 85
FDSO @10 94 92 91 59 89
@3 90 86 88 51 92
@1 85 68 72 43 89
MRR 62 73 74 48 80
@10 72 85 84 60 87
FDST
@3 65 76 77 53 82
@] 56 65 70 41 68
TABLE V
QUERY ACCURACY ANALYSIS
Methods Group1 Group2 Group3 Group4 Group5 Group 6 Float Ratio
Probability factor framework 60 49 58 68 58 57 135 £ 45
Logical object-oriented interaction 69 62 57 56 61 55 19.5 £ 35
QOMOU 71 65 63 60 64 56 4.2 + 1.8
SELECT ?event ?eventType ?value ?timestamp ?statuscode '§10°0:
?machineName < 800} SQL
WHERE { £ XML
#Selecting events from BaiscAMMachine Procedure and Unit g 600: OWL
?proc ISA88:isMonitoringInProcessStage ?Process . & 400
‘?urnid owl:isAssigneTo ?Process . 200 L

FILTER( ?proc = OpcSS:UnitProcedureWarning).

FILTER( ?unit = OpcSS:BasicAMMachine).

#Selecting timestamps of events

7Process ISA88:hasInput ?starttime.

?stimeDE Alarm59031:hasDescription

OpcSS:StartTimeProcess;

Error59029:hasDescription /

CurrentMode: Value ?starttime.

#Selecting events from OPC UA machines.

?machine OpcUa:hasEvents ?event .

?event OpcUa:types ?eventType .

?event OpcUa:hasValue ?value .

?event OpcUa:monitorTime ?timestamp .

?event OpcUa:state ?statuscode .

FILTER(?variableType = "State”||?variableType = "MonitoringType”) .
#Extracting from RDF information

node OpcUa:histValues ( ?Time ?Value ?starttime ?endtime) .}

Listing 3. Query statement-part B.

modeling approaches, and have been widely validated with
multiple datasets, the performance of QOMOU is chosen
as a metric for comparison with these four methods. The
performance evaluation criteria follow the evaluation proto-
col [41] for the query—answering task. For each dataset in

I I I . . . . I . I 1
1000 1300 1600 1900 2200 2500 2800 3100 3400 3700 4000

Dataset size [piece]

Fig. 10. Query time for different semantic Web technologies.

Table I, each triple (s, r, 0) in the test set is converted into a
query. QOMOU takes s and r as input and outputs a ranked
list of candidate answers, E, keeps the scores in a descending
order, and E, = o1, ..., 0r. After removing all other correct
answer entities in the original test set, the rank r, of the
correct answer entity o is recorded within the candidate set E,,.
If the model performs well, the correct answer entity o has
a higher rank than all other candidates, as it is assigned a
higher confidence score. After recording the ranks for all test
examples, we calculate two types of metrics.

1) Hits@N: The proportion of test examples where the
target answer entity is ranked within the top @N
predictions.

2) Mean Reciprocal Rank (MRR): The average of (1/r,)
across all test examples, where r, is the rank of the
correct answer entity o.
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For the data described in Table I, smaller embedding dimen-
sions between 50 and 100 yield the best results for graph-based
embedding methods. MRR, @10, @3, and @1 represent eval-
uation metrics of Mean Reciprocal Rank, Hits@10, Hits@3,
and Hits@]1, respectively. The best method in each category
is highlighted. MRR and Hits@N scores vary in [0.0, 1.0],
with higher scores indicating better prediction performance.
Table IV presents the performance of QOMOU and graph
embedding-based models on the dataset. It is shown that
QOMOU outperforms all four datasets except for the FDSO
dataset. This is due to the limited semantic descriptions in this
dataset, leading to less effective device recognition by ECSSC.

In validating the query accuracy rate, the accuracy [36] of
existing heterogeneous data integration schemes is compared.
The formula calculates the accuracy rate QAR of a heteroge-
neous data integration scheme, measuring the proportion of
successfully matched data entries out of the total integrated
ones. Sg represents the number of successfully integrated data
entries, and R is the total number of entries. The accuracy
rate is obtained by dividing Sg by R. A higher value indicates
better accuracy in data integration, i.e.,

S
QAR = ER x 100%. (13)

Experiments are conducted to validate the query accu-
racy of QOMOU [42]. The comparison methods include the
probability factor framework [43] and the logical object-
oriented interaction [44]. Furthermore, the experimental data
are divided into four groups, each with 1000 data points.
Additionally, for more comprehensive statistical analysis, 1000
randomly sampled data points are selected as group 5, and
some noisy data are introduced into it to form group 6. This
ensures that accurate fluctuation comparisons can be made
after completing experiments for all six groups. Table V shows
the accuracy and fluctuation ranges of three methods. It is
illustrated that the accuracy of each technique fluctuates within
a specific range. The accuracy in Table V is expressed as a
percentage, with values ranging from [0, 100]. During the
experiment, the float ratio calculates the standard deviation for
each group, and the final fluctuation range is determined by
combining these values, taking the minimum and maximum
standard deviations across all groups. It effectively encom-
passes the overall fluctuation range of the entire dataset. Due to
the utilization of event-class semantic integration algorithms,
the accuracy of QOMOU is above average, indicating higher
query accuracy. The data in Table V also show that the seman-
tic reasoning accuracy of QOMOU is generally moderate in
noisy dataset.

To compare these methods, the performance improvement
value PI is given as
N0V T 100%

oV n
where NV represents the numerical value of the model used
in this work, OV represents the numerical value of another
model, and n represents the number of data groups. ECSSC
improves performance by approximately 7% compared to
the baseline device recognition models. Compared to graph
embedding-based methods, QOMOU achieves approximately

PI (14)
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13% higher query performance. Additionally, compared
to structured queries and XML, ontology-based queries
improve query efficiency by 5% on average. Furthermore, a
keyword-matching algorithm improves the query accuracy of
heterogeneous data integration solutions by 4% on average.

VI. CONCLUSION

Industry 4.0 transforms traditional manufacturing into intel-
ligent manufacturing. This work emphasizes the importance of
semantic interoperability in the factory. Moreover, OPC UA is
a practical knowledge model suitable for factory workshops.
However, due to data heterogeneity, achieving unified manage-
ment and communication in factories with OPC UA is highly
challenging. Currently, ontology mapping methods based on
OPC UA suffer from slow speed and low efficiency. Therefore,
a QOMOU model is designed to solve the above problems.
QOMOU maps the OPC UA information model to the resource
description framework in ontology technology and creates a
Web Ontology Language in a graph structure. Additionally,
an ECSSC method is proposed and validated in device-type
recognition, achieving approximately 7% higher accuracy than
benchmark models. It addresses the semantic heterogeneity
issue of devices produced by different manufacturers. Finally,
compared with graph embedding-based methods, QOMOU’s
query performance is approximately 13% higher. Experimental
results show that the query time with QUMOU is reduced by
5% on average than those with SQL and XML. Furthermore,
QUMOU achieves 4% higher query accuracy on average than
other state-of-the-art querying models.

In the future, we plan to refine our semantic mapping
algorithm to enhance the accuracy of queries by integrating
similarity models [45] of event classes [46]. We aim to
link unknown entities to the manufacturing knowledge graph
to enable the construction of automated equipment models
and real-time data integration, thereby advancing prediction
maintenance. We will use reinforcement learning to infer
missing relationships in large-scale and semantically incom-
plete OPC UA models. Through reinforcement learning, we
will design an automatic inference mechanism that leverages
existing data and patterns to predict these missing relationships
and assess the validity of the proposed triples. In this way,
we can not only enrich the semantic information of the
knowledge graph but also provide more accurate support for
equipment maintenance and fault prediction, further enhancing
the intelligence and reliability of production systems.
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