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Abstract—Water quality prediction methods forecast the short-
or long-term trends of its changes, providing proactive advice for
preventing and controlling water pollution. Existing water quality
prediction methods typically fail to capture water quality’s
nonlinear characteristics accurately and only consider historical
time series data. However, meteorology and other factors also sig-
nificantly impact water quality indicators. Therefore, considering
only historical data of water quality time series is not feasible.
To solve this problem, this work proposes a hybrid water quality
prediction model called CMLIP, which integrates convNeXt V2,
multimodal bottleneck transformer, low-rank multimodal fusion,
iTransformer, and PatchTST. CMLIP inputs water quality time
series and meteorological remotely sensed rainfall images into a
multimodal fusion module before prediction. Specifically, CMLIP
integrates the model of ConvNeXt V2 to extract image features.
Its multimodal fusion module combines a multimodal bottleneck
transformer and the low-rank multimodal fusion to fuse the time
series and images. Furthermore, CMLIP combines iTransformer
and PatchTST to form an improved prediction module that real-
izes the prediction of fused features. Experimental results with
real-life water quality time series and remotely sensed rainfall
images demonstrate that CMLIP when fusing meteorological
data, achieves an average improvement of 17% in water quality
forecasting accuracy compared to forecasts using only water
quality time series. Moreover, CMLIP outperforms other state-
of-the-art algorithms in both data fusion and prediction, with
an average enhancement of 6% in fusion effectiveness and an
average improvement of 22% in prediction accuracy.

Index Terms—iTransformer, low-rank fusion, multimodal bot-
tleneck transformer (MBT), multimodal fusion, PatchTST, time
series prediction, water quality.
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I. INTRODUCTION

WATER is the source of life, a precious resource on
which all civilizations depend, and at the heart of

many of today’s social issues. With the progress of civilization
in human society and the enhancement of public awareness
of environmental protection, scientific usage and systematic
protection of water resources have become an inevitable
choice for the sustainable development of all countries in the
world. Water quality prediction methods can obtain future
short- or long-term water quality change trends. Thus, it
can guide water pollution prevention and provide techni-
cal support for water environmental control. Water quality
prediction [1] is essentially a time series prediction problem,
which refers to predicting changes in water quality indicators
in the future based on their values at historical time points.
Current studies on water quality prediction can be divided
into mechanistic and data-driven models. Mechanistic models
require many parameters to be preset in advance and the
training process is complex, requiring large computational
resources and a long time. Data-driven models can be divided
into statistical, machine learning, and deep learning methods.
Autoregression [2] in statistical methods is one of the most
typical and basic time series models, and autoregressive
integrated moving average [3] is one of the most famous
and widely used prediction methods. Meanwhile, higher-order
supervised models in machine learning are available for time-
series prediction. For example, extreme gradient boosting [4]
can efficiently process complex data by gradient boosting,
support vector machine [5], DeepForest [6] and other models
can also realize the prediction. Machine learning is built
upon statistical learning, and deep learning is a subfield of
machine learning. They have achieved good results in time
series prediction in recent years. Compared with machine
learning, which requires complex feature engineering, deep
learning can automatically learn patterns and trends in the time
series data. Moreover, a neural network involves important
parameters such as the number of hidden layers and that of
neurons. For example, Transformer [7] treats time steps of the
input sequence as positional information, designs the features
of each time step as a vector, and adopts the encoder-decoder
framework for prediction. FEDformer [8] introduces a local
attention mechanism and a reversible one to convert the time
domain into the frequency domain, and it better captures local
features in the time series data and has higher computational
efficiency.

2327-4662 c© 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:22:15 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4610-0141
https://orcid.org/0000-0002-1510-9127
https://orcid.org/0000-0002-8958-5943
https://orcid.org/0000-0001-7176-2369
https://orcid.org/0000-0003-2148-0923
https://orcid.org/0000-0002-5408-8752


BI et al.: HYBRID WATER QUALITY PREDICTION WITH MULTIMODAL LOW-RANK FUSION AND LOCALIZED ATTENTION 21159

However, many other factors affect water quality indicators
in the water environment, e.g., meteorology, pollutants, and
others. Thus, only considering the historical data on water
quality is not sufficient to make an accurate prediction [9].
Other multimodal data, such as remotely sensed meteoro-
logical data, need to be jointly considered [10], moreover,
the fusion of data information from different modalities is
imperative. Multimodal fusion is a hot research direction in
artificial intelligence, which is committed to utilizing differ-
ent types of input data to complement various information.
It obtains a more comprehensive semantic expression and
improves the depth of the model’s understanding of the target
task, thereby enhancing the understanding of the complex
scene and decision-making ability. Usually, multimodal fusion
methods are divided into four types: 1) early fusion; 2) late
fusion; 3) hybrid fusion; and 4) model-level fusion [11]. Early
fusion integrates high-dimensional features immediately after
feature extraction. Late fusion performs integration only after
the output results of each modality. Hybrid fusion combines
the advantages of the former types to decrease the model’s
structural complexity and the difficulty of training. Model-
level fusion mainly depends on the fusion model, which
is dedicated to learning the joint feature representation of
different modalities.

To improve the accuracy of water quality prediction with
the meteorological data, a hybrid prediction model combining
the ConvNeXt V2 [12], multimodal bottleneck transformer
(MBT) [13], low-rank multimodal fusion (LMF) [14],
ITransformer [15], and PatchTST [16], called CMLIP for
short, is proposed. The main contributions of this work are
summarized as follows.

1) Considering the influence of meteorological factors on
water quality indicators, the multimodal fusion of water
quality time series and remotely sensed rainfall images
is innovatively proposed. The multimodal fusion-based
prediction model, CMLIP, is proposed with both time
series and images as the input.

2) CMLIP integrates ConvNeXt V2, MBT, LMF, iTrans-
former, and PatchTST to extract remotely sensed rainfall
image features, realize multimodal fusion of time series
and images, and predict future information with the
fused information, respectively.

3) Experimental results with real-world water quality and
remotely sensed rainfall images demonstrate that CMLIP
outperforms other models in prediction and fusion. The
prediction accuracy of fusing time series and rainfall
images is 17% higher than that of unfused ones on
average.

The remaining sections of this article are organized as
follows. Section II discusses the related work in recent
years and summarizes the contributions. Section III introduces
the model structures in detail. Section IV conducts various
experiments with real water quality data to verify the model’s
performance. Section V summarizes this article and gives the
future direction.

II. RELATED WORK
A. Time Series Forecasting

Water quality prediction is essentially a time series
prediction problem. The algorithms and deep learning models
are powerful tools for solving complex and variable time series
prediction problems [17]. The time series prediction model
based on deep learning can be roughly summarized into three
categories. First, recurrent neural networks (RNNs) [18], [19],
e.g., long short-term memory models [20], [21], are good
at dealing with nonlinear sequences and effectively capture
temporal dependencies in the time series. However, the com-
putational complexity is high and time-consuming when facing
long time series with large periods. Second, convolutional
neural networks (CNNs) [22] transform the time series data
into a 2-D matrix and automatically extract its features through
operations such as convolutional and pooling to realize the
prediction. For example, temporal convolutional networks [23]
solve problems of gradient vanishing and high computational
complexity of traditional RNNs when dealing with long series.
However, they are more demanding on the training data, and
if the dataset is small or uneven, it can lead to insufficient
generalization ability or overfitting. Third, Transformer and
its variants, which are currently a hot research topic in the
field of time series prediction, utilize the attention mechanism
to weight various parts of the input data adaptively, thus
making the model pay more attention to the key information
while reducing the influence of irrelevant information and fully
capturing the potential connections among time nodes. For
example, Autoformer [24] uses a decomposition architecture
with an autocorrelation mechanism to discover and represent
dependencies at the subseries level for long-term forecasting
of time series data. The rapid iterative development of time
series prediction models has also facilitated the water quality
prediction research process. Qiao et al. [25] adopted the
attention mechanism and spatial-temporal map convolution
to extract nonlinear features of water quality and spatial
dependence of the river network, respectively, to improve the
accuracy of long-term series prediction.

However, the above models only take historical time series
data as input and lack the capability for data fusion, which lim-
its their ability to incorporate additional information sources
to enhance prediction accuracy. To address this limitation,
this work innovatively combines multimodal fusion with time
series prediction, utilizing image features to complement
the time series information, aiming to enrich the model’s
understanding of temporal patterns. The prediction module
of CMLIP employs a distinct embedding technique that first
applies an inversion method to map the time series data into
a suitable feature space. Following this, the data is processed
with a patching strategy, which segments the time series
into smaller and manageable tokens. These patched indicator
tokens are then fed into an encoder network. Unlike tradi-
tional models that might only consider temporal dependencies,
CMLIP pays more attention to correlations among indicators
and adjacent regions in the multi-indicator time series.
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Fig. 1. Structure of CMLIP.

B. Multimodal Fusion

Data fusion methods based on deep learning have
been widely adopted to solve many complex environment
monitoring problems, including water quality prediction. The
work in [26] analyzes the relationship between meteorological
elements and wind power, and proposes a prediction method
fusing wind speeds from multiple sources to predict the wind
power generation. Guo et al. [27] proposed a temporal fusion
method based on a spectral and temporal fusion of remotely
sensed geostationary ocean color imager and Himawari images
of inland waters. In addition, multimodal fusion methods
based on the attention mechanism have become popular.
The work in [28] designs a cross-modal skip connection
method that allows visual modalities to skip cross-attention
and directly perform self-attention, realizing efficient fusion.
Liu et al. [29] designed a loss function for medical image
fusion in different dimensions and propose a multimodal
feature fusion module to preserve modality information better.
The work in [30] extracts and transforms features into the
same feature space and uses cross-attention for feature fusion
to achieve 3-D object detection. Shvetsova et al. [31] trained
and generated a fusion Transformer that can jointly process
any number of modalities and allow modalities to focus on
each other, without changing the Transformer. Tang et al. [32]
designed multimodal dynamic augmentation blocks to cap-
ture within modality sentiment contexts, and bi-directional
attention blocks to capture fine-grained multimodal sentiment
contexts for multimodal sentiment analysis. The work in [33]
proposes a generalized multimodal image fusion algorithm,
which combines the Transformer and encoder structures to

achieve global and local information fusion with a composite
attention fusion strategy.

Unlike the above studies, the multimodal fusion module
of CMLIP introduces a novel approach by incorporating new
tokens as attention bottlenecks. These tokens play a crucial
role in facilitating the sharing and interaction of information
across different modalities. Meanwhile, CMLIP employs a
low-rank fusion approach to multimodal data. This approach
takes into account the weights of each modality in the fusion
process, thus capturing the complex relationships between
different modalities more accurately. The technique of low-
rank fusion effectively improves the expressive power and
computational efficiency of the model by reducing the redun-
dant information between modalities and weighting the key
information. The introduction of attention bottlenecks and the
application of low-rank fusion techniques not only improves
the predictive performance of CMLIP but also ensures that it
better handles intricate multimodal data.

III. MODEL FRAMEWORK

This section presents the overall structure of the CMLIP
model. CMLIP includes three main components, i.e., data
feature processing module, multimodal data fusion module,
and prediction module. As shown in Fig. 1, the time series
is encoded with the embedding block, which inverts normal
time tokens into indicator tokens, and therefore, a token
contains the variations of an indicator. We then slice them into
multiple patches, reducing the length of the input sequence.
This approach allows for learning both global and local tem-
poral dependencies across multiple metrics in the time series
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Fig. 2. Comparison of embeddings among transformer, iTransformer, and CMLIP.

while maintaining low complexity. Moreover, remotely sensed
rainfall images are dimension-aligned and feature-learned with
the ConvNeXt V2 network. ConvNeXt V2 builds upon the
strengths of traditional CNNs, making it highly effective
for image processing, especially for remote-sensing images.
Compared to Transformer networks, ConvNeXt V2 has a
more compact design, achieving good performance with fewer
parameters. The fusion module employs the attention bottle-
necks, the information of different modalities interacts and
passes through these bottleneck tokens. Applying a low-rank
fusion strategy, the fusion weights of each modality are fully
calculated to fuse water quality time series and remotely
sensed rainfall images. Finally, the fused data is adopted
as input to the hybrid water quality prediction module. The
multimodal attention, the feed-forward neural network, and
the normalization layers in the prediction module are used to
compute the attention distribution, introduce nonlinearity, and
mitigate gradient vanishing, respectively.

Specifically, the input time series Xt is embedded into
patched indicator tokens by the embedding block. The images
Xr are extracted by ConvNeXt V2 to generate uniform-format
features. The resulting tokens for the time series and the
remotely sensed rainfall images are denoted as yt and yr,
respectively. yt and yr are updated as Zt and Zr after interacting
with each other through the MBT block. Zt and Zr are fed into
the LMF block to produce the T , which is finally fed into the
prediction module.

A. Data Feature Processing

1) Embedding: The embedding structure of CMLIP com-
bines the idea of variate tokens in iTransformer and the idea
of patching in PatchTST to embed the water quality time
series, which is different from the embedding in the traditional
Transformer. Transformer embeds all the indicators of the
same time node in the sequence into a time token. Thus, it
does not differentiate between single and multiple indicators
and pays more attention to the correlations among time
nodes. A time series of length c generates c multidimensional
tokens, which have the complexity of O(c2) in both time
and space. When CMLIP deals with multiple indicators, each
indicator in the time series is embedded independently into
the indicator token. Thus, it does not require the same time
node, which enables clearer learning of the correlations among
the indicators when the attention mechanism is utilized to
describe inter-relationships between tokens. On this basis,

overlapping or nonoverlapping new tokens are generated by
patching the indicator tokens according to windows of a
certain size and steps. The values of adjacent time points
are close, and therefore, the tokens can capture the local
information, which also makes the model focus on the features
of different regions. Indicator tokens have positional logic
within themselves, which can be implicitly stored in the
neurons of the feed-forward neural network. Thus, CMLIP
does not need the positional embedding in Transformer. The
comparison of embeddings among Transformer, iTransformer,
and CMLIP is shown in Fig. 2.

2) ConvNeXt V2: ConNeXt V2 is adopted to extract fea-
tures of remotely sensed rainfall images. It is built upon
ConNeXt by designing a fully convolutional masked autoen-
coder framework, which consists of a sparse convolution-based
ConvNeXt encoder and a lightweight ConvNeXt block
decoder. The feature collapse occurs when training ConNeXt
directly on masked inputs. Therefore, a global response nor-
malization layer is added to address this issue to enhance
the feature competition among ConvNeXt block channels and
promote feature diversity during the training.

B. Multimodal Fusion Module

CMLIP adopts the idea of the attention bottleneck fusion
in the MBT and makes improvements based on it to fuse
water quality time series data and remotely sensed rainfall
images data. MBT is essentially a Transformer applied to the
multimodal case, and it introduces multiple new tokens yf =
[y1

f , y2
f , . . . , yB

f ] as attention bottlenecks in the input data. B is
the number of tokens in the attention bottleneck. The input
sequence y becomes [yt‖yf ‖yr]. Different modalities can only
share information and interact with each other through these
bottleneck tokens. In this case, yt and yr can only exchange
information through yf . To reduce the computational com-
plexity, the model requires that each modality’s information
flow be organized and condensed before passing through the
bottleneck tokens, and the necessary information must be
shared to ignore the redundant information. The number of
attention bottleneck tokens must be restricted to be much
smaller than that of input data tokens. The bottleneck markers
are updated separately according to different modes according
to the time series and remotely sensed rainfall images. Finally,
the bottleneck markers of each mode are averaged to yield the
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Fig. 3. Tensor fusion via the tensor outer product.

final fusion markers. The process can be defined as
[
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where yl
t denotes a vector of tokens of the time series in fusion

layer l, yl
r denotes a vector of tokens of the remotely sensed

rainfall images in fusion layer l, θt represents a parameter
vector of the time series, and θr denotes a parameter vector of
the remotely sensed rainfall images.

In terms of the fusion location, a medium-term fusion
strategy is employed. Fusion is performed at the nth layer, and
each modality in the first n−1 layers learns its features with
the self-attention mechanism, i.e.,

yl+1
t = Transformer

(
yl

t; θt

)
(4)

yl+1
r = Transformer

(
yl

r; θr

)
. (5)

Then, yl
t and yl

r interact with each other through the attention
bottlenecks in the fusion layer in a self-learning manner. yl

denotes a set of yl
t and yl

r, which is given as

yl =
[
yl

t‖yl
r

]
(6)

yl+1 = Multimodal-Transformer
(

yl; θt, θr

)
. (7)

We improve MBT with low-rank fusion to achieve a better
fusion of time series and remotely sensed rainfall images.
Traditional MBT directly sums the multimodal tokens after
interaction learning and calculates the average of the fusion
results. Instead, we adopt LMF to perform a low-rank fusion
of multimodal tokens after interaction learning by fully consid-
ering the fusion weights of each modality. A common fusion
method considering the weights is the tensor fusion network
(TFN) [34], where the input tensor Z is passed through the
linear layer P to obtain the output tensor T . The process is
shown in Fig. 3. M is the number of modalities. Z is the
M−order tensor. W is the weight of the layer, which is the
(M +1)th-order tensor. The exceeding (M +1)th dimension is
the magnitude of the output tensor T , and b is the bias. Then

T = p(Z;W, b) = W · Z + b. (8)

However, this method has too many parameters. It is
computationally complex and has a high risk of overfitting. To
solve this problem, CMLIP decomposes the weight tensor W
into M sets of modality-specific factors W̃ , each of which is
T-dimensional. In the case of the effective decomposition, the

smallest value of R is the rank of the tensor. The process can
be defined as

W̃ =
R∑

i=1

M⊗
m=1

w(i)
m . (9)

In fact, the tensor Z also needs to be decomposed into
{zm}M

m=1 in the computation process, which is parallel to the
modality-specific factors, and the output tensor T can be
obtained, thus reducing the computational complexity of the
fusion. The process is shown in Fig. 4

T =
(

R∑
i=1

w(i)
t ⊗ w(i)

r

)
· Z

=
(

R∑
i=1

w(i)
t · zt

)
◦

(
R∑

i=1

w(i)
r · zr

)
. (10)

C. Water Quality Prediction Module

This work adopts the encoder structure of the traditional
transformer to implement hybrid water quality prediction, and
its module functions have been changed because of different
embedding methods and the changes of operands from time
tokens to patched indicator tokens. In CMLIP, a feed-forward
neural network learns the nonlinear characteristics of each
patched indicator token, which encodes an individual token
and decodes the future representation. A normalization layer
is used to normalize patched indicator tokens, which keeps
different indicator variables in the same interval and reduces
differences in numerical properties among different indicators.

In Transformer, the attention mechanism performs the atten-
tion computation on different positions of the input sequence
to learn its contextual relationships and dependencies. In
CMLIP, the attention mechanism is used to capture the
correlations among different indicator variables, as shown in
Fig. 1. The attention mechanism module performs a linear
map from indicator variables to yield the query (q), key (k),
and value (v) of indicator tokens since indicator variables
are normalized in their feature dimensions [35]. The attention
mechanism computes the correlations, Atten(q, k, v) of q, k,
and v with the following formula:

Atten(q, k, v) = Softmax

(
qk�
√

dk

)
v (11)

where dk denotes the dimension of k.

IV. EXPERIMENTAL EVALUATION

A. Dataset

Two datasets are adopted in this experiment to verify the
performance of CMLIP. The first dataset is the real-time data
of national surface water quality automatic monitoring from
the China Environmental Monitoring Station [36] in Wucun,
Langfang City, Hebei Province, China. It is recorded by the
sensor every four hours, from August 2018 to December 2023.
This dataset includes nine water quality indicators, i.e., dis-
solved oxygen, ammonia (AN), total nitrogen, the potential of
hydrogen (PH), temperature, conductivity, turbidity, potassium
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Fig. 4. Low-rank fusion via weight decomposition.

Fig. 5. In the water data in Hebei, China.

Fig. 6. PH in the water data in Hebei, China.

permanganate index, and total phosphorus. The time series
of AN and PH are shown in Figs. 5 and 6. Another dataset
uses the satellite remote sensing data published in the Global
Satellite Precipitation Program mission [37]. It includes mul-
tisensor and multisatellite information in satellite networks.
Moreover, the remote sensing data is recorded every 30 min
with a spatial resolution of 0.1◦x 0.1◦. The period is also from
August 2018 to December 2023, and the variables include
latitude, longitude, time, and rainfall. A typical remotely
sensed rainfall image in Beijing–Tianjin–Hebei of China is
shown in Fig. 7.

B. Evaluation Metrics

To test the prediction accuracy of CMLIP, mean absolute
error (MAE) [38] and mean squared error (MSE) [39] are
adopted. MAE and MSE are calculated as

MAE = 1

a

a∑
j=1

∣∣∣ĥj−hj

∣∣∣ (12)

Fig. 7. Typical remotely sensed rainfall image in Beijing–Tianjin–Hebei of
China.

TABLE I
PREDICTION RESULTS FOR CMLIP WITH DIFFERENT S

MSE = 1

a

a∑
i=1

∣∣∣ĥj−hj

∣∣∣
2

(13)

where a denotes the number of samples. hj and ĥj denote the
ground truth and predicted values of data point j.

C. Parameter Tuning

The selection of the hyperparameters greatly affects the
prediction accuracy. CMLIP’s hyperparameters include the
length of the input sequence (S), the dimension of embedding
(D), the number of fusion bottleneck tokens (B), the batch size,
and the optimizer. The prediction accuracy varies significantly
with S. If S is too short, the attention mechanism cannot
capture the information, yielding lower prediction accuracy.
However, if S is longer, there is too much noise or periodic
information in the sequence, leading to overfitting that reduces
the prediction accuracy. Table I shows the MAE, MSE, and
the prediction time of CMLIP for different input sequences,
and the results prove that the prediction accuracy of CMLIP
is the best when S = 96.

Too small D does not capture enough information, and
larger D yields a more expressive model. However, it requires
more training time, computational resources, and overfitting.
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TABLE II
PREDICTION RESULTS FOR CMLIP WITH DIFFERENT D

TABLE III
PREDICTION RESULTS FOR CMLIP WITH DIFFERENT B

Fig. 8. Loss values for different optimizers.

During the tuning process, D greatly impacts the prediction
accuracy. Table II shows MAE, MSE, and the prediction
time of CMLIP when D∈[128, 256, 512, 1024]. The results
prove that CMLIP achieves the best prediction accuracy when
D = 512.

The number of bottleneck tokens is the most important
hyperparameter in the fusion part. To avoid too large a com-
putational complexity of the fusion, the number of bottleneck
tokens needs to be much smaller than that of input data
tokens. Table III shows MAE, MSE, and the prediction time of
CMLIP with different B, and the result proves that the fusion
performance is the best and the prediction result is the most
accurate when B = 1.

We compare five optimization algorithms: 1) stochastic gra-
dient descent (SGD); 2) adaptive delta (Adadelta); 3) adaptive
gradient algorithm (Adagrad); 4) adaptive moment estimation
(Adam); and 5) Nesterov-accelerated Adam (Nadam). As
shown in Fig. 8, the results indicate that Adam exhibits the
fastest convergence rate and achieves the lowest loss compared
to other optimizers. Consequently, we select Adam as the
optimizer.

The choice of batch size impacts both the stability and speed
of training. A smaller batch size allows for more frequent

TABLE IV
PREDICTION RESULTS FOR CMLIP WITH DIFFERENT BATCH SIZES

TABLE V
PARAMETER SETTING OF CMLIP

Fig. 9. Comparison of ground-truth values and predicted ones for AN.

Fig. 10. Comparison of ground-truth values and predicted ones for PH.

updates but introduces instability, whereas a larger batch size
provides more stable updates and faster per-step training,
potentially at the cost of limiting the final model performance.
Table IV shows the MAE, MSE, and the prediction time of
CMLIP with different batch sizes, indicating that the most
accurate prediction results are obtained when the batch size
is 48. Based on these parameter tuning experiments, the best
values of the model input parameters are given in Table V.

D. Comparison of Experimental Results

We first realize single-indicator prediction for CMLIP with
only water quality time series. The ground-truth values and
predicted ones of AN and PH are shown in Figs. 9 and 10,
respectively. The red line indicates the predicted values and
the blue line indicates the ground-truth values. To verify the
prediction accuracy of CMLIP, we choose four state-of-the-art
models for comparison, including iTransformer, Autoformer,
PatchTST, and Crossformer [40]. These models encompass
a variety of methodologies and technical approaches. iTrans-
former is a significant advancement in transformer-based
architectures for time series forecasting and serves as an
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TABLE VI
COMPARISON OF PREDICTION RESULTS OF ITRANSFORMER, AUTOFORMER, PATCHTST, CROSSFORMER, AND CMLIP

Fig. 11. MSE values of different models for AN.

Fig. 12. MAE values of different models for AN.

essential benchmark for evaluating CMLIP’s capability to
handle complex temporal patterns. Autoformer is renowned
for its automated feature learning capabilities and introduces
self-correlation mechanisms that effectively capture long-term
dependencies. PatchTST enhances sensitivity to local time pat-
terns through its patching strategy, which directly corresponds
to the patching strategy in CMLIP, making it a highly suitable
comparator. Crossformer excels at establishing associations
across multiple time series by leveraging cross-time and cross-
variable attention mechanisms, enhancing the modeling of
complex dependencies. Given that CMLIP’s embedding design
also adeptly captures features in multivariable time series,
Crossformer is an appropriate contrastive model. Table VI

Fig. 13. MSE values of different models for PH.

Fig. 14. MAE values of different models for PH.

shows the MSE and MAE of each model in predicting AN
and PH. Each result is presented as the mean ± standard
deviation, derived from five independent replicate experiments.
Figs. 11–14 show MSE and MAE values of different models
when the prediction steps are in a set of {24, 48, . . . , 256},
respectively. Table VII displays the floating point operations
(FLOPs), the number of parameters, and the prediction dura-
tion for different models. The results show that the prediction
accuracy of CMLIP is higher than the other four models and
the computation time is shorter with more FLOPs and the
number of parameters.

We investigate the fusion effect of water quality time series
and remotely sensed rainfall data on the prediction accuracy
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TABLE VII
COMPARISON OF COMPUTATIONAL COSTS OF ITRANSFORMER, AUTOFORMER, PATCHTST, CROSSFORMER, AND CMLIP

TABLE VIII
COMPARISON OF CMLIP’S PREDICTION RESULTS OF WATER QUALITY TIME SERIES FUSED WITH REMOTELY SENSED RAINFALL IMAGES AND ONLY

THE TIME SERIES

Fig. 15. MSE values of CMLIP for different inputs.

of multi-indicator in Table VIII, where column Xt is the result
of the hybrid prediction with CMLIP for each indicator with
only the input of time series, and column Xt + Xr is that
for each indicator with both the water quality time series and
spatiotemporally aligned remotely sensed rainfall images. The
comparison of MSE and MAE is shown in Figs. 15 and 16.
The results show that CMLIP’s prediction accuracy of the
water quality time series fused with remotely sensed rainfall
images is 17% higher than that with only the time series on
average. Moreover, the prediction outcomes after fusion are
more stable. The reason is that the fusion module in CMLIP
complements the water quality time series features with the

Fig. 16. MAE values of CMLIP for different inputs.

features of remotely sensed rainfall images, which increases
the effective information of inputs and improves the prediction.

In addition, to verify the performance of CMLIP for
fusion, we compare CMLIP with three commonly used fusion
models, including MBT, LMF, and TFN. These models are
representative of the multimodal data fusion field and adopt
different technical routes and design philosophies, each show-
casing unique advantages. MBT emphasizes flexibility and
adaptability, utilizing self-attention mechanisms to capture
dependencies. LMF reduces redundant information through
dimensionality reduction techniques, effectively minimizing
resource consumption. TFN excels at capturing complex

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:22:15 UTC from IEEE Xplore.  Restrictions apply. 



BI et al.: HYBRID WATER QUALITY PREDICTION WITH MULTIMODAL LOW-RANK FUSION AND LOCALIZED ATTENTION 21167

TABLE IX
COMPARISON OF FUSION RESULTS OF MBT, LMF, TFN, AND CMLIP

Fig. 17. MSE values of MBT, LMF, TFN, and CMLIP.

Fig. 18. MAE values of MBT, LMF, TFN, and CMLIP.

interactions between modalities, providing richer feature rep-
resentations. By comparing these models, we can better reflect
CMLIP’s effectiveness in multimodal data fusion. The compar-
ison of MSE, MAE, and Prediction Time of different models is
shown in Table IX. Figs. 17 and 18 show each model’s MSE
and MAE values when the prediction steps are in a set of
{96, 128, . . . , 512}, respectively. Table X displays the FLOPs
and the number of parameters for different models. Results
demonstrate that CMLIP outperforms MBT, LMF, and TFN in
terms of fusion effectiveness, achieving superior results with a
shorter processing time, higher FLOPs, and a greater number
of parameters. This is because the fusion module in CMLIP
combines attention bottlenecks and a low-rank fusion strategy
to achieve shared interaction and dynamic fusion of different
modal features, which more accurately takes into account the
weights of each modality, efficiently manages computational
complexity, and reduces the risk of overfitting. This makes the
fusion of multimodal data more accurate and efficient.

V. CONCLUSION

Water quality is affected by meteorological factors in
addition to the water environment. Existing water quality
prediction methods only take water quality historical indicator

TABLE X
COMPARISON OF COMPUTATIONAL COSTS OF

MBT, LMF, TFN, AND CMLIP

data as the input. However, there are many other factors
that affect water quality indicators, such as meteorology and
pollutants. Therefore, considering only historical time series
data on water quality is not sufficient for accurate prediction,
and a fusion of data from different modalities is needed. This
work proposes a novel hybrid water quality prediction model
called CMLIP, which combines the ConvNeXt V2, multimodal
bottleneck transformer (MBT), low-rank Multimodal Fusion
(LMF), itransformer, and PatchTST. ConvNeXt V2 is inte-
grated to learn features of remotely sensed rainfall images
and align them with the feature dimensions of time series.
The combination of MBT and LMF is used as a multimodal
fusion module to learn the influences of the time series and
rainfall images and fuse their respective features. Finally, the
fused features are fed into the prediction module, which com-
bines iTransformer and PatchTST for prediction. Experimental
results with real-life water quality time series and remotely
sensed rainfall images prove that CMLIP outperforms other
state-of-the-art algorithms in fusion and prediction. CMLIP’s
accuracy of water quality prediction by fusing time series and
rainfall images is 17% higher on average than that with only
water quality time series.

The performance of CMLIP relies on the quality of the
input data, including water quality time series and remotely
sensed rainfall images. If these data have more noise or
missing values, it may lead to a decrease in its prediction
performance. To improve data quality, in the future, we intend
to introduce techniques such as data cleaning, denoising,
and missing value completion. Currently, CMLIP fuses water
quality time series with remotely sensed rainfall images and
demonstrates promising results for specific datasets. However,
its generalization capability across different datasets still needs
further validation. To enhance the prediction accuracy of the
model and its generalization ability, we plan to fuse other
modal data in the future, such as pollutant concentration
data [41], to more comprehensively capture various factors
affecting water quality. This will not only help to improve the
prediction accuracy but also verify its applicability in diverse
environments.
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