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Abstract—Nowadays, Internet of Things Devices (I0TDs) sup-
port numerous applications that require extensive computational
resources and are sensitive to delays. Nevertheless, IOTDs are
constrained by limited computational power and battery life, pre-
venting them from processing all tasks in real-time. Computation
offloading provides a solution to these problems where IOTDs
can offload part of their tasks to edge servers for execution.
Small Base Stations (SBSs) are located closer to IOTDs, which
act as edge servers. However, SBSs have limited computing
resources compared with a Cloud Data Center (CDC). Therefore,
a heterogeneous edge-cloud system is often deployed in urban
areas for computation offloading. In addition, attaining the lowest
cost in such a system while satisfying the delay requirements of
tasks presents a significant challenge. In this work, a computation
offloading strategy aimed at minimizing the overall system cost
is proposed. Initially, an optimization problem with real-world
constraints is defined, leveraging the hybrid architecture as
its basis. Then, a novel swarm optimization algorithm named
Grey wolf optimization embedded with Simulated annealing and
Genetic learning (GSG) is proposed to solve this optimization
problem. GSG optimizes resource allocation and task offloading
among I0OTDs, SBSs, and CDC. Simulation experiments involving
real-life tasks demonstrate that GSG achieves a significantly
lower system cost than its existing peers.

Index Terms—Internet of things, edge-cloud systems, swarm
intelligent algorithms.

I. INTRODUCTION

The integration of computer devices into commonplace
objects via the Internet provides a paradigm known as Internet
of Things (IOT). It creates a network that enables seamless
data transmission and reception through that Internet. IOT not
only facilitates the collection of information but also provides
opportunities to optimize the cost through utilizing the ac-
quired data [1]-[3]. In recent years, the development of 10T
Devices (I0TDs) has experienced a substantial increase. They
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include smart mobile devices [4], intelligent vehicles [5], and
manufacturing robots [6]. These IOTDs enable the associations
of physical and digital domains by utilizing sensors and actu-
ators. Nonetheless, the data collected by them requires storage
and processing for effective utilization. Moreover, certain tasks
demand substantial computing resources and energy to address
the extensive volume of information they entail. However,
executing these applications locally becomes challenging given
their limited computing resources and battery energy [7]. In
addition, excessive energy consumption diminishes battery
performance and shortens their lifespan.

Computation offloading provides a solution to solve this
problem [8]. It refers to assigning computation-intensive tasks
to an edge server that has sufficient computation resources for
processing and fetching the completed computation results.
It can be categorized into two distinct types [9], i.e., full and
partial offloading. The former offloads all tasks to edge servers
for processing and the latter offloads a part of tasks only. Small
Base Stations (SBSs) can act as edge servers for process-
ing offloaded tasks. They offer flexibility for deployment in
densely populated areas and furnish IOTDs with nearby access
to high-quality services [10]. However, computation resources
available at the edge are not as abundant as those in a Cloud
Data Center (CDC). Thus, CDC deals with excessive tasks
that SBSs cannot process in an edge-cloud system.

The additional task offloading process from IOTDs to
SBSs/CDC unavoidably causes communication latency. In
addition, as many IOTDs offload tasks to various SBSs/CDC,
the challenge arises of efficiently allocating computational
resources in each system component. The edge-cloud system’s
total cost comprises those of IOTDs, SBSs, and CDC. There-
fore, its minimization is important.

Motivated by the aforementioned analysis, this work designs
a computation offloading method in an edge-cloud system
to minimize the system’s total cost. First, an edge-cloud
architecture comprising multiple IOTDs, SBSs, and CDC is
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constructed. Then, considering the properties of each device
and user requirements, a cost-minimization problem is formu-
lated. Finally, a novel swarm intelligent algorithm named Grey
wolf optimization embedded with Simulated annealing and
Genetic learning (GSG) is designed to solve it. It incorporates
the Metropolis acceptance rule of Simulated Annealing (SA)
and genetic learning operations into Grey Wolf Optimization
(GWO). GSG optimizes energy consumption and resource
allocation while meeting the latency requirement of I0TDs.
Experimental results demonstrate that GSG achieves economic
efficiency in the edge-cloud system.

II. PROBLEM PRESENTATION

An architecture of an edge-cloud system is illustrated in Fig.
1 to investigate the cost minimization problem. Each I0TD
in this system is connected to one Access Point (AP), and
each IOTD establishes a connection with an associated AP.
It establishes uplink and downlink communication channels
among [OTDs, SBSs, and/or CDC. In addition, APs possess
limited computing resources and do not operate applications
independently. Moreover, two types of tasks are considered in
this work, i.e., static offloading and dynamic offloading [11].
As illustrated in Fig. 2, in the static offloading manner, the
entire task is offloaded to an SBS or CDC for computing.
Conversely, task partitioning occurs at runtime in dynamic
offloading, and its determination relies on the accessibility of
networks and the current state of SBSs/CDC. To represent task
types of IOTD ¢ associated with AP j, a binary variable f;; is
introduced. If a task of IOTD ¢ supports dynamic offloading,
1i5=0; otherwise, p;;=1 if a task of IOTD 4% only supports
static offloading. In the case of dynamic offloading, tasks can
be offloaded to SBSs/CDC in any proportion. o;; denotes the
proportion of a task of IOTD ¢ offloaded to the edge through
AP 7 and it can not exceed one, i.e.,

J
Y oy <li€(l,2,..,N] (1)

where J denotes the number of APs, and N denotes that of
10TDs.

If a task of IOTD i is offloaded to SBS k through AP j,
ozkal Similarly, if a task of IOTD ¢ is offloaded to CDC
through AP j, af;=1. It is worth noting that a task can only
be offloaded to at most one SBS or CDC at any given time,
ie.,

J
P ag<lie(1,2,..,N] 2)

Jj=1

MK
bjx

where K denotes the number of SBSs.
In the case of static offloading, the task of IOTD ¢ must be
offloaded to one SBS or CDC. Thus, when p;;=1, we have:

J K J
> k4> ag=1,i€[1,2,..,N] 3)
=1 j=1
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Fig. 1. Architecture of the edge-cloud system.
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Fig. 2. Static offloading and dynamic offloading.

A. Latency Model

The latency of this edge-cloud system consists of three parts
related to IOTDs, SBSs and CDC.
1) Latency of I0TDs: Let T;; denote the local execution
latency of IOTD ¢7’s tasks associated with AP j. Then,
. 0,
Tij=(1-0ij) & “)
Ji
where 6; represents the quantity of computing resources
needed by IOTD i and f; denotes its CPU running speed.
Let T;; denote the latency of transmission between I0TD 1
and AP j. Based on [12], we have:
.. I O,
TijZO'ij Ai”—FO'ij = Y
R;; R;

®)

where the first term is the uplink transmission latency and the
second one is the downlink transmission latency. I;; (O;;)
denotes the bit size of the input (output) data of IOTD i
transmitted via AP j. R” (R”) represents the transmission
rates for uplink (downlink) channels between IOTD ¢ and its
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associated AP j. Based on the Shannon’s theorem, Rij and
R;; are obtained as:

Py (dij)~"]o|*

Rij=i; Bjlog,(1+ )2 ) (6)
5 . P.o(d::)""]05]2
Rz‘jZAijBﬂng(H%) (7

where )\;; is the bandwidth proportion of uplink and downlink
channels linking IOTD ¢ with AP j. B (B ) is the bandwidth
of uplink (downlink) channels for AP j. P” (P”) represents
the transmission power of uplink (downlink) channels linking
I0TD i with AP j. d;; denotes the distance between 10TD
i and AP j. o1 (02) denotes fading coefficients of uplink
(downlink) channels between each IOTD and each AP. wy is
the noise parameter and v denotes a coefficient.

The aggregate allocation of bandwidth proportions across
all connected IOTDs to AP j equals one, i.e.,

ZZAU%LZA”%_Ue[ 2,..J] (8

i=1 k=1
The time consumption related to IOTDs is calculated as:

Ty=T;+T5 ©))

2) Latency of SBSs: Tz’j represents the execution latency
of SBS k when processing the offloaded tasks from IOTD 4
through AP j. fi denotes the CPU processing speed of SBS
k. We have:

k0 (10)
Y S
The total latency of SBS k is:
k_rk | ik
T5=T5+1T;; 1D
where TZ’; denotes the transmission time between SBS k and
AP j associated with IOTD i.

3) Time modeling in CDC: T}; denotes the execution time
of CDC when processing the offloaded tasks from IOTD ¢
through AP j, and f. denotes the CPU processing speed of
CDC. Therefore, similar to SBS, we have:

T5= 7110 (12)
fe

The total time related to CDC is T

ij» and it is obtained as:

T=T5+15 (13
where Tfj denotes the transmission time between CDC and
AP j associated with IOTD q.

Finally, the total time of completing tasks in IOTD i (7;) is
the maximum value of local execution and offloaded one, i.e.,

(14)

Moreovgr, T; has to be less than the time limit defined by
the user (75), i.e.,

Ti<T (15)

B. Total Cost Modeling

The total system cost correlates closely with its energy
consumption, which consists of three parts related to IOTDs,
SBSs, and CDC.

1) Energy consumption related to 10TDs: E” denotes the
local execution energy in IOTD i associated with AP j, i.e.,

Eij:(l_gij)eisi(fi)Q (16)

where S; is decided by the chip architecture of 10TD .
Moreover, f; must not exceed its maximum limit (f;), i.e.,

fi < fi (17)

Eij denotes the transmission energy between IOTD ¢ and
AP 7 and it is obtained as:
E;j=P;;Ti;+P,;T; (18)
where T” and T;; denote the time of data transmission
between IOTD ¢ to AP j, and that between AP j to IOTD
1, respectively.
We have the total energy consumption related to IOTD <,
Le.,
Eij=E;j+E;; (19)
2) Energy consumption modeling of SBSs: Let Elk7 denote
the execution energy of processing IOTD i’s offloaded tasks
in SBS k through AP j. It is calculated as:

Efj:afyo’ljgzsk(fky

where Sy is decided by the chip architecture of SBS k. In
addition, the CPU processing speed in SBS must not exceed
its maximum limit (f), ie.,

N J A
DD akife < i

i=1 j=1

(20)

21

Efj denotes the transmission energy between SBS £ and
AP j associated with IOTD 4, i.e.,

Ef=2af,Pjd;y, (22)
where ij denotes the power of data transmission between
SBS k and AP j. dj; represents the distance between AP j
and SBS k.
Therefore, the total energy consumption of SBS % is:
k_pk | pk
E5=E;;+E;; (23)
3) Energy consumption modeling of CDC: Efj denotes the
execution energy of processing IOTD 7’s offloaded tasks in
CDC through AP j, i.e.,

EC =aj UUG € (24)

where e, represents the energy consumption associated with
each CPU cycle in the CDC.

Efj denotes the transmission energy between CDC and AP
7 associated with IOTD ¢, which is given as:

E¢=2aF, Pjed;e (25)
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where ]Sjc denotes the transmission power between AP j and
CDC, and d;. represents the distance between AP j and CDC.

The total energy consumption of the CDC is E‘fj ie.,

Ef=E¢+E;; (26)
F represents the total cost of the edge-cloud system, con-
sisting of three distinct components: the cost of IOTDs (F ),

SBSs (F s), and CDC (F ¢). Finally, we have:

F=F1+Fs+Fc 27)
N J
Fr=Y_Y rEy (28)
i=1 j=1
N J K
Fs=> > kBl (29)
i=1j=1k=1
J
Fo=> Y reaEf (30)
i=1 j=1

where ;, 1, and . denote prices ($/KWH) of energy in IOTD
i, SBS k, and CDC, respectively.

C. Constrained Optimization Problem

Thus, decision variables include afj, Tijs afj, Aijs fis Jr
We aim to optimize f, i.e.,

Min F
¢

where ( represents a vector containing decision variables.
Moreover, they are subject to (1), (2), (3), (8), (15), (17) and
(21). To address the aforementioned constraints, we employ
a penalty function method [13] to convert all constraints into
penalties, thus transforming the problem into an unconstrained
optimization one.

III. GREY WOLF OPTIMIZATION EMBEDDED WITH
SIMULATED ANNEALING AND GENETIC LEARNING (GSG)

GSG is proposed to solve the above optimization problem
(F). First, chaotic mapping [14] is utilized to initialize the
population, ensuring comprehensive coverage of the search
space. M represents the population size, and D represents
the number of decision variables. Then, the population (X) is
initialized as:

Zz:4 X Zi—l X (1 — Zi—l)

S (31)
Xi:bd-l-(bd — bd) X Z;

where Z represents a zero matrix with M x D elements. by
and by denote lower and upper limits of each dimension d.

In the searching process, the rest of grey wolves (w) search
under the guidance of the first three best wolves (a, 8 and 9).
D%, D and D?° represent the distance between w and «, and
that between [ and 6, respectively. They are updated as:

(32)
(33)

D*=|Cy x ag— X
DP=|Cy x Bg— X

DO=|C3 x 64— X} (34)
where C7, Cs and C3 denote updating coefficients. «g, 54
and 4 denote the elements of dimension d of «, /3 and 6. X;
denotes the element of dimension d of individual <.

Moreover, X7, X, and X3 denote the positions of w that
need to be adjusted to reflect the influence of «, S and 4§,
respectively. They are updated as:

X1:|ad—A1 X Da‘ (35)
Xo=|B4 — As x DP| (36)
X3=|64 — A3 x D’ (37)

where A;, Ay and A3 denote updating coefficients.

Finally, the positions in the next iteration are the average
values of X, X5 and X3, i.e.,

X1+ X0+ X5

Xj(t+1)= 3

(38)
where X’ (t+1) denotes the element of dimension d of indi-
vidual ¢ in iteration ¢+1.

A crossover strategy from the Genetic Algorithm (GA) is
integrated to sustain the diversity of the population. Specifi-
cally, p. controls the possibility of a crossover. If the updated
individual (X*(¢-+1)) outperforms a random one (X*(t+1))
of the population, each dimension of X*(¢+1) is updated with
(39); otherwise, it is adjusted with (40).

Xi(t+1)=X}(t+1) (39)

Xi(t+1)=r - ag(t + 1)+(1—r1—r) - X5(t+1), k€[1, ..., M]

(40)
where «4(t+1) denotes the element of dimension d of the best
individual in iteration ¢+1. X¥(¢+1) denotes the element of
dimension d of individual & in iteration ¢+1. 1 and r denote
two random values in [-1,1].

GSG adopts a mutation operation to avoid its trapping into
local optima. Specifically, an individual undergoes mutation,
and the probability of mutation is governed by p,,. If the
individual is mutated, the value of a random dimension of
the individual is reinitialized in the decision space. Finally,
GSG employs the Metropolis acceptance rule to determine
the selection of individuals for the next iteration. It facilitates
escaping from local optima and effectively locating global
optima by appropriately setting the initial temperature (7).
The acceptance probability (p,) is defined as:

<N

Pa=€ (41)

where 1) denotes the difference in fitness values before and
after each iteration.

Finally, the process of GSG is given in Algorithm 1.
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TABLE I
PARAMETER SETTING

J djj fi Fi Pyj (Pyj)

Pk (Pjc)

wo S; Sk Bj (Bj) 5 T Te

3 0221 km  [1,101x10% Hz  6x1010 H 20 dBm

15 dBm

-56 dBm 10—23 10—31 5 MHz [0.01,0.07] $/KWH 0.01 $/KWH 0.03 $/KWH

Algorithm 1 GSG

Input: i, ba, ba, T, Pe, and pp,

Output: X
1: Initialize X with (31)
2: for t=1:f do
3 Choose «, B and ¢
4:  Update a with 27%
5: for i=1:M do
6 for d=1:D do
7 Update A;, A2 and Az with 2 X a X r1—a
8: Update Cy, C3 and C3 with 2 X r2—a
9: Calculate D® with (32)
10: Update X; with (35)
11: Calculate D? with (33)
12: Update X with (36)
13: Calculate D° with (34)
14: Update X3 with (37)
15: Update X;(¢t+1) with (38)
16: end for
17: end for
18:  for i=1:M do
19: if <p. then
20: for d=1:D do
21: Select k in [1,M]
22: if f(X'(t+1)) < f(X*(t+1)) then
23: Update X (t+1) with (39)
24: else ‘
25: Update X (t+1) with (40)
26: end if
27: end for
28: end if
29: if r<p,, then
30: Select d as - random number in [1,D]
31: Xg(t4+1)=bg+(ba—baq)
32: end if
33: Calculate the p, with (41)
34: Adopt Metropolis acceptance rule to update the individual
35:  end for
36: end for

Cost ($)

[~-GSG
~-GSP

- SAPSO|
~GA
[-WOA

0 100 200 300 400 500 600 700 800 900 1000

Iteration count

Fig. 3. Cost in each iteration for each algorithm.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Experiments are carried out to simulate the real situation of
an edge-cloud system. The parameter setting of the system is

25 T T T T

201

o
A

Cost ($)

of J

I I
5 10 15 20 25 30
Number of IOTDs

Fig. 4. Cost v.s. d for each algorithm.

TABLE 11
PENALTY OF EACH METHOD FOR DIFFERENT NUMBERS OF IOTDs

N

5 10 15 20 25 30
Methods
GSG 0.00 0.00 0.00 0.00 0.00 0.00
GSP 0.00 0.00 0.00 0.00 2.11 2.72
SAPSO 000 0.01 004 021 0.52 0.36
GA 000 0.00 0.00 326 1884.23  9978.36
WOA 0.00 0.00 0.00 0.00 4.82 20.11

Cost ($)

0.5 1 1.5 2
Distance (km)

Fig. 5. Cost v.s. d;; for each algorithm.
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Fig. 6. Cost v.s. 7; for each algorithm.

shown in Table I. The parameters of GSG are set as: p. = 0.5,
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Time (s)
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Fig. 7. Time of each algorithm for 1000 iterations.

pm = 0.01, and T = 10'°. GSG is compared with four
state-of-the-art peers, including GA [15], Genetic SA-based
Particle swarm optimization (GSP) [16], SA-based Particle
Swarm Optimization (SAPSO) [17], and Whale Optimization
Algorithm (WOA) [18].

Fig. 3 shows the system’s cost of GSG, GSP, SAPSO,
GA, and WOA. The number of IOTDs is set to 10. The
results demonstrate that GSG achieves the lowest cost (0.92
$) after its iterations. Fig. 4 illustrates the system’s total
cost of five algorithms given different numbers of IOTDs.
It is demonstrated that GSG achieves the lowest cost when
N varies from 0 to 30. Furthermore, Table II presents the
penalty of each algorithm for different values of IN. The results
demonstrate that the penalty of GSG consistently remains zero
across varying values of N, affirming that GSG consistently
finds valid solutions. However, its peers cannot find solutions
that meet all constraints when N is large.

The total system cost for various distances between APs and
IOTDs is shown in Fig. 5. It demonstrates that the system cost
increases for all algorithms as d;; grows, with GSG consis-
tently achieving the lowest cost across all d;;. Fig. 6 shows the
cost with different values of ’f; and the number of IOTDs for
GSG. It demonstrates that GSG obtains satisfactory solutions
under different latency constraints. Finally, Fig. 7 shows the
time consumption of each method with 1000 iterations given
10 IOTDs in the system. It shows that the time consumption of
GSG is slightly longer than GA and SAPSO. However, both
of them cannot generate valid solutions for large V.

V. CONCLUSIONS

The wide use of Internet of Things Devices (I0TD) greatly
facilitates people’s lives due to their easy access, convenient
monitoring, and fast speed. However, they face constraints
such as limited battery energy and computational resources,
hindering their ability to process all tasks demanded by users.
This work constructs an edge-cloud architecture to facilitate
computation offloading for IOTDs. A constrained cost min-
imization problem is defined and resolved utilizing a novel
swarm intelligent algorithm named Grey wolf optimization
embedded with Simulated annealing and Genetic learning
(GSG). It optimizes resource allocation and task offloading
among IOTDs, small base stations, and a cloud data center
to minimize the overall system cost. Experiments based on

real-life data are conducted and the results demonstrate that
GSG attains the lowest cost in fewer iterations than its peers.
Our future work intends to extend GSG by incorporating the
optimal edge selection strategies and more efficient search
mechanisms with deep learning.
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