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A B S T R A C T

Water quality forecasting methods can reflect the water quality situation and development trend in the short or 
long-term future and provide important support for water environment management. Due to the influence of 
other factors fluctuating in the water environment and errors in collection equipment, water quality time series 
data are characterized by instability and high nonlinearity, and a nonlinear regression problem of non-smooth 
series data is difficult in the prediction field. This work proposes a hybrid model for water quality prediction 
called SMDF2 to improve the prediction accuracy. SMDF2 integrates the Savitsky-Golay (SG) filter, Multi-sea
sonal trend decomposition using loss (MSTL), Discrete Fourier Transform (DFT), Frequency Enhanced Block 
(FEB) and Frequency Domain Enhanced Attention (FEA) in an encoder-decoder architecture. The SG filter is 
employed to smooth out the noise to diminish the instability in time series. MSTL is used to extract periodic and 
trend components for the nonlinear sequences, and DFT is utilized to achieve the conversion between the time 
domain and the frequency domain. FEB and FEA are employed for the frequency-domain feature extraction and 
the frequency-domain feature correlation learning. Experimental results with real domestic and international 
water environment datasets for both long-term and short-term predictions demonstrate that SMDF2 surpasses 
various advanced models in accuracy for both single-element and multi-element predictions. Specifically, it 
improves prediction accuracy by an average of 21.73 % for single-element tasks and 18.14 % for multi-element 
tasks.

1. Introduction

Water quality prediction, which forecasts future changes in water 
quality by analyzing historical data, has become a central objective of 
water quality monitoring. This technology provides critical decision- 
making support for water environment management and pollution 
control, playing an indispensable role in preventing water pollution and 
safeguarding ecological health. Therefore, developing stable and highly 
efficient predictive models for water quality is crucial [1–3].

Water quality prediction methods fall into two broad categories: 
mechanistic and data-driven models. Data-driven approaches include 
traditional statistical methods and recent deep learning models. Tradi
tional techniques extract linear relationships: autoregressive integrated 
moving average models [4–6] provide recursive sequential predictions, 
while support vector machines [7] flexibly handle low and high- 
dimensional data. Advances in deep learning [8] are enabling more 

sophisticated data-driven models for water quality time series 
forecasting.

Recurrent neural networks (RNNs) [9,10] demonstrate strong po
tential for time series forecasting, where gated architectures like long 
short-term memory (LSTM) networks [11–13] and gated recurrent units 
[14] effectively address gradient issues through gated mechanisms. 
Autoregressive RNNs enable probabilistic forecasting [15] using exten
sive temporal data. Recently, Transformers [16] have gained promi
nence for capturing long-range dependencies via attention mechanisms, 
with significant enhancements including: Informer [17], which employs 
ProbSparse self-attention and distillation for linear-complexity long- 
sequence processing; Autoformer [18] utilizing seasonal-trend decom
position and autocorrelation mechanisms for multi-resolution analysis; 
and Pyraformer [19] implementing hierarchical pyramidal attention 
through tree structures to capture multi-scale dependencies efficiently.

Due to the influence of environmental factors and data acquisition 
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equipment errors, water quality time series data typically exhibit 
instability and high nonlinearity. Addressing the nonlinear regression 
problems associated with processing such non-stationary sequential 
data represents a significant challenge in the current field of prediction. 
Specifically, water quality data often contains substantial noise and 
outliers, which interfere with subsequent analysis and may lead to 
model overfitting. Simultaneously, influenced by regular environmental 
factors such as seasons and weather, water quality data demonstrates 
complex periodic and trend components, requiring models capable of 
capturing intricate patterns. However, conventional forecasting 
methods struggle to effectively extract and utilize these features to 
enhance model performance. Furthermore, when processing complex 
sequences, relying solely on time-domain analysis may inadequately 
reveal all intrinsic patterns within the data, particularly exhibiting 
limitations in capturing dynamic variations at different frequencies. 
Finally, efficiently identifying key features and their inter-correlations 
in processed data is crucial for improving model performance.

To address the aforementioned challenges and enhance water quality 
prediction accuracy, we propose a hybrid forecasting model called 
SMDF2. This model integrates the Savitsky-Golay (SG) filter [20], Multi- 
seasonal trend decomposition using loss (MSTL) [21], Discrete Fourier 
Transform (DFT) [22], Frequency-enhanced block (FEB), and Fre
quency-enhanced attention (FEA) [23]. Key contributions of this work 
are summarized as follows. 

• To capture unsteady and nonlinear features of water quality data, 
SMDF2 adopts the SG filter to mitigate outliers and noise. Mean
while, SMDF2 innovatively uses MSTL to decompose water quality 
data, which extracts multi-seasonal components and trend ones of 
multiple indicators in the water quality data to capture global pat
terns of the series.

• SMDF2 combines DFT for time-frequency domain interconversion 
and uses FEB and FEA for frequency-domain feature extraction and 
capturing frequency-domain feature correlations.

• Experimental results from both long-term and short-term predictions 
with actual domestic and international water quality data demon
strate that SMDF2 outperforms other models with respect to accu
racy for both single-factor and multi-factor predictions.

The experiment utilized two internationally representative river 

monitoring datasets: 

• Wu Village Station, Langfang, China (39.81444◦N, 116.942629◦E), a 
critical node in the North China Plain’s water quality monitoring 
network.

• USGS 02423130, Alabama River at Lees County, USA 
(32.379000◦N,-86.308000◦W), a federally managed station in the 
southeastern U.S. agricultural belt.

To clarify, we highlight key differences between the current work 
and our previous study [24] as follows. 

• The study in [24] exclusively employs attention for feature extrac
tion and learning, whereas this work introduces convolution layers 
in the FEB module to capture features. Integrating a convolutional 
neural network (CNN) with self-attention enables simultaneous 
consideration of local and global information in handling time series 
data, enhancing both the model’s prediction accuracy and its 
generalization ability.

• The study in [24] only uses a dataset spanning from August 2018 to 
December 2021 from a river water quality automatic station in Hebei 
Province. Unlike that, this work additionally uses a water quality 
dataset obtained from a river segment of the Alabama River spanning 
from May 2017 to August 2019 for validating the prediction accu
racy of SMDF2.

• The study in [24] exclusively conducts multi-element water quality 
prediction for the potential of hydrogen (pH). In contrast, this work 
introduces single-element water quality prediction. It extends multi- 
element experiments to include total nitrogen (TN) prediction, of
fering a more thorough evaluation of SMDF2’s prediction 
performance.

2. Material and methods

2.1. Dataset description

Experiments adopt two data sets for single-element and multi- 
element prediction, respectively. The data for the single-element 
experiment includes dissolved oxygen (DO) detected by USGS Station 
02423130 on the Alabama River at Lees County, USA (32.379000◦N, 

Fig. 1. Time series of dissolved oxygen (DO, mg/L) in surface waters of Alabama, USA.

Fig. 2. Time series of potential of hydrogen (pH) in surface waters of Langfang, Hebei, China.
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-86.308000◦W). Exploration Service from May 2017 to Aug. 2019, with 
a time point interval of one hour and more than 19,800 samples in total. 
The multi-element experiments utilize real-time data collected from Wu 
Village Automatic Monitoring Station in Langfang, Hebei Province, 
China (39.81444◦N, 116.94263◦E). The data collection period spans 
from Aug. 2018 to Dec. 2021. This high-resolution regional monitoring 
exemplifies the increasing emphasis on quality data in hydrology. As 
underscored by [25] in their global isotope dataset analysis, robust 
observational foundations are essential for advancing predictive accu
racy. The dataset comprises approximately 6500 samples, and the 
sampling interval is 4 h. Water quality indicators include pH, TN, DO, 

and electrical conductivity (EC). The DO time series in the Alabama 
dataset and pH and TN in the Hebei dataset are presented in Figs. 1–3, 
respectively.

2.2. SMDF2

This section outlines the overall architecture of SMDF2, as shown in 
Fig. 4. The design of SMDF2 integrates the SG filter, MSTL, DFT, FEB, 
and FEA modules to address the challenges of instability, high nonlin
earity, and multi-scale variability in water quality time series. The 
integration is motivated by the complementary strengths of these 

Fig. 3. Time series of total nitrogen (TN, mg/L) in surface waters of Langfang, Hebei, China

Fig. 4. Structure of SMDF2. SMDF2 is composed of N encoders and M decoders. h represents the time sequence node, S represents the seasonal component, and E 
represents the trend component. The lower corner marker represents the encoder or decoder. The upper corner marker represents the number of layers passed 
through, e.g., SM,3 denotes the seasonal component output by the third decomposition block after the decoder in the M th layer.
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components. The SG filter effectively reduces high-frequency noise and 
outliers without distorting underlying trends, which is crucial for non- 
stationary environmental data. The MSTL algorithm enables decompo
sition into multiple seasonal, trend, and residual components, thereby 
capturing complex periodicity and improving robustness under envi
ronmental variability. The DFT facilitates time–frequency domain 
transformation, revealing periodicity, frequency distribution, and other 
informative spectral features for prediction. Building on evidence that 
sophisticated feature integration frameworks, such as the trustworthy 
multi-focus fusion strategy of [26] can significantly enhance classifica
tion and prediction in complex environmental systems, SMDF2 in
corporates attention mechanisms in FEB and FEA to strengthen 
nonlinear feature extraction and correlation learning across nodes. 
These modules extend the capabilities of conventional self- and cross- 
attention by enhancing frequency-domain feature learning, enabling 
the model to capture both local and global nonlinear correlations be
tween nodes in multi-element water quality series.

2.2.1. Savitsky-Golay filter
The SG filter is applied to smooth the water quality data. A poly

nomial curve is fitted with least squares within a given data window, and 
the smoothed data points are obtained by calculating the derivatives of 
polynomials. The SG filter is computationally fast. It has low storage 
requirements and can extract valuable information from the underlying 
trends. It does not alter the underlying shape and length of the time 
series. In addition, the SG filter can remove noise and unwanted signals 
from the data samples, reducing interference with the prediction results. 
The selection of the window size g and polynomial orders p was deter
mined empirically. A comparative analysis of different parameter set
tings is presented in Section 3.1. The formula of the SG filter is shown as 
follows: 

h[ϵ] =
∑2m

k=0
c[k]⋅h[ϵ+ k − m] (1) 

where the length of the filter window is g = 2 m + 1, and each 

measurement point is h = (− m, − m + 1, …, 0, 1, …, m − 1, m). h‾[ϵ] is 
the ϵth output data point. The data points from h[ϵ − m] to h[ϵ + m] are 
neighboring to the ϵth data point. c is a vector of coefficients of the SG 
filter, which depends on the window length (g) and the polynomial order 
(p). g determines the number of neighboring data points used for p, while 
p determines the order of the fitted polynomial.

2.2.2. Multi-seasonal trend decomposition using loss
Water quality indicators are affected by seasons, climate, human 

factors, and usually exhibit complex seasonal patterns that may vary 
across time scales. As demonstrated in studies of environmental vari
ability [27], such complexity necessitates advanced decomposition 
methods. Existing sequence decomposition techniques can only extract a 
single seasonal component, limiting their accuracy. In contrast, MSTL 
allows for multiple seasonal parameters to be specified, enabling sepa
ration of complex seasonal patterns. To fully capture the periodicity of 
water quality series and enhance prediction robustness under environ
mental variability, SMDF2 employs the MSTL algorithm to decompose 
the series into multiple seasonal, trend, and residual components. MSTL 
obtains extremely accurate seasonal components with low computa
tional cost. The formula is given as: 

Yt = Et + S1t+…+ Snt+Rt t = 1,…,T (2) 

FE = max
(

0,1 −
Var(Rt)

Var(Et + Rt)

)

(3) 

FS = max
(

0, 1 −
Var(Rt)

Var(St + Rt)

)

(4) 

where t represents a specific time point, Y is a time series containing T 
time points, Et signifies the trend value obtained by decomposing Y at 
time point t, Snt indicates the nth seasonal value acquired through 
decomposition at time point t, and Rt represents the residual value 
derived from decomposing Y at time point t. FE and FS represent trend 
intensity and seasonal intensity, respectively.

The trend component captures lower-frequency or long-lasting 

Fig. 5. Example MSTL decomposition of pH data into trend, seasonal components (periods 24 and 168), and residual.
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changes in the time series, while the seasonal component represents 
changes that occur at regular intervals. The residual component repre
sents the remaining value of the original time series after removing both 
the trend and seasonal components. The predicted pH values are 
decomposed using MSTL, as shown in Fig. 5. In implementation, the 
MSTL decomposition was performed using the stats models library [28]. 
The seasonal periods were set to (24, 168), which corresponds to daily 
and weekly cycles when the data are sampled at hourly resolution. For 
the dataset with four-hour intervals, the same configuration equiva
lently captures fluctuations at approximately four-day and four-week 
scales. The trend window was set to 101 to ensure sufficient smooth
ing of long-term variations, while seasonal smoothing was constrained 
to a constant level. This configuration allows MSTL to effectively sepa
rate high-frequency daily variations from longer-term weekly fluctua
tions, while preserving interpretable trend and residual components.

2.2.3. Discrete Fourier transform
Frequency-domain signals can better reveal features such as peri

odicity, frequency distribution, and energy distribution of the data, 
which provide more informativeness during the model training. 
Consequently, the time-domain signals are transformed into frequency- 
domain ones for feature learning. DFT is applied to FEB and FEA in 
SMDF2. In implementation, instead of utilizing the entire frequency 
spectrum, a fixed number of 64 frequency modes are retained. This 
strategy reduces computational complexity to a linear scale with respect 
to sequence length, while ensuring that the main periodic information of 
the series is preserved. The time domain is converted to the frequency 
domain with the discrete Fourier variation D in (5). The inverse discrete 
Fourier variation D − 1 realizes the conversion of the frequency domain 
back to the time domain in (6). 

hl =
∑T− 1

n=0
hne− j2πlnT , l = 1,2,…, L (5) 

hn =
∑L− 1

L=0
hle− j2πlnT , n = 1,2,…,T (6) 

where hn is the nth time point in the time series. j represents an imagi
nary unit, and hl is the lth complex number in the frequency domain. 

e− j2πlnTis a complex exponential function representing the complex 
amplitude value and phase information in hl.

2.2.4. Frequency enhanced block
FEB is similar to the traditional Transformer’s self-attention, which 

realizes the extraction of local features from the input time series. 
However, SMDF2 uses a convolutional layer in FEB, which is more 
useful for capturing local features in the time series. FEB is employed in 
both the encoder and decoder. Its functions are frequency domain pro
jection, random sampling, feature learning, and frequency domain 
complementation. 

• Frequency domain projection: First the input h ∈ ℝN×Dis linearly 
projected withw ∈ ℝD×Dto obtain x, i.e.,x = h⋅w, adjusting the 
length and increasing the nonlinearity. Then convert x from the time 
domain to the frequency domain X by DFT.

• Random sampling: This is done in the frequency domain with a very 
small amount of Q randomly selected for retention. Typically, this 
type of sampling is lossy to the input. However, this loss has minimal 
impact on the accuracy of the final prediction. Due to the sparse 
nature of frequency domain information and the prevalence of 
random noise in the high-frequency components, much of this in
formation can be discarded in time series prediction tasks. Random 
sampling significantly reduces the length of the input vectors, thus 
decreasing computational complexity and information redundancy, 
so a random selection is employed:

X̃ = Choose(X) = Choose(D (x) ) (7) 

• Feature learning: Randomly initialize the matrix I and multiply it 
with randomly chosen frequency componentsX̃.

• Frequency domain complementation: This process is the reverse of 
frequency-domain sampling. To ensure that the projection back into 
the frequency domain matches the dimensions of the original input 
signal, the result of X̃⊙ I must be zero-padded. Finally, it is trans
formed back to the time domain using an inverse Fourier transform. 
In practice, the number of retained frequency modes is fixed at 64 to 
control complexity, and zero-padding is applied to restore the orig
inal sequence length before the inverse transform.

FEB is defined as: 

FEB(x) = D
− 1(Padding(X̃ ⊙ I) ) (8) 

where A is temporary matrix, i.e., A = X̃ ⊙ IandA ∈ ℂM×D. Its element
Am,do, m∈(1, 2, …, M) and do∈(1, 2, …, D), is given as: 

Am,do =
∑D

di=1

X̃m,di Idi ,do ,m, di ∈ (1, 2,…,D) (9) 

2.2.5. Frequency domain enhanced attention
FEA is similar to cross-attention in a traditional Transformer, where 

the signals from the encoder and decoder are subjected to cross- 
attention operation to capture the intrinsic relationships between 
these two sets of features. The implementation process of FEA is similar 
to that of FEB, which is frequency domain projection, random sampling, 
feature learning, and frequency domain complementation. Initially, the 
FEA inputs include the keys 

(
x ∈ ℝL×D) and values 

(
v ∈ ℝL×D) from the 

encoder, as well as the queries 
(
u ∈ ℝL×D) from the decoder. FEA is 

defined as: 

X̃ = Choose(D (x) )
Ṽ = Choose(D (v) )
Ũ = Choose(D (u) )

(10) 

Atten(X̃, Ṽ, Ũ) = Softmax
(

X̃Ṽ
⊤

̅̅̅̅̅̅
dṼ

√

)

Ũ (11) 

FEA(x, v,u) = D
− 1
(Padding(Atten(X̃, Ṽ, Ũ) ) ) (12) 

where X̃, Ṽ and Ũ are the frequency domain signals obtained by DFT of x,
vandu.

2.2.6. Mixture of experts decomposition blocks
SMDF2 employs MOE for progressive decomposition in both encoder 

and decoder in addition to global MSTL multi-seasonal decomposition of 
water quality time series. MOE contains a set of averaging filters of 
different sizes that progressively separate the trend and the period from 
the inputs to achieve optimization of the prediction results alternating 
with the decomposition of the series. MOE is denoted as: 

Htrend = Softmax(L(x) )*(P(x) ) (13) 

where the weights of the mixed trends are obtained by applying the 
Softmax to L(x), and P (⋅) is the average filter with various sizes.

3. Results and discussion

3.1. Experimental setup

During the training stage, hyperparameters are selected through a 
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systematic process combining literature-based initial ranges, pre
liminary sensitivity analysis, and iterative comparisons of prediction 
results, and final values are set as follows. The number of attention heads 
is 8, the batch size is 64, the number of input features in the encoder or 
decoder is 512, the learning rate is 0.0001, the number of encoder layers 
is 3, and the number of decoder layers is 2. The input step size is selected 
from the set of {12, 24, 36, 48, 72, 96}. For the SG filter, its window size 
is 5, and its polynomial order is 3. These values are chosen based on their 
impact on MSE and MAE over multiple validation runs, balancing ac
curacy and computational efficiency. Table 1 presents the MSE and MAE 
results for SMDF2 with different SG filter window lengths (g) and 
polynomial orders (p) with the prediction step of 6.

To prevent time series data leakage, the dataset is split into training, 
validation, and testing sets strictly according to chronological order, 
with a ratio of 7:1:2. No shuffling is applied before splitting, ensuring 
that validation and testing data points are always temporally ahead of 
the training set. All preprocessing steps are fitted using only the training 
set statistics and then applied to the validation and test sets, thereby 
avoiding any inadvertent exposure of future information during 
training.

To assess robustness with respect to the temporal split, we evaluate 
three alternative cut-offs for both single-element and multi-element 
settings: 70/10/20 (baseline), 65/10/25, and 75/10/15 for train/val/ 
test. Each configuration is independently trained and evaluated five 
times, and the mean ± standard deviation of MSE and MAE for predic
tion step 6 are reported. As shown in Table 2, results are consistent 
across cut-offs and across single-element and multi-element settings, 
indicating that conclusions are not artifacts of a particular split.

3.2. Model prediction and comparison

To evaluate SMDF2’s performance in water quality time series pre
diction, three advanced deep learning models, including Transformer, 
Autoformer, and Informer, are selected for comparison. Additionally, 
recent studies on fuzzy neural networks [29] have demonstrated the 
efficacy of integrating fuzzy logic and neural networks for handling 

Table 1 
MSE and MAE of SG filters with different g and p.a

g p Alabama dataset Hebei dataset

MSE MAE MSE MAE

5 3 0.158 0.232 0.186 0.276
7 3 0.172 0.276 0.209 0.313
9 3 0.273 0.315 0.302 0.397
7 5 0.281 0.323 0.335 0.426
9 5 0.169 0.247 0.204 0.311
11 5 0.183 0.251 0.217 0.329
9 7 0.189 0.263 0.225 0.341
11 7 0.162 0.235 0.193 0.279

0.238 0.303 0.265 0.354

a Note: Values in bold indicate the best results.

Table 2 
SMDF2’s Performance under different temporal split ratios.

Setting Split ratio MSE MAE

70/10/20 0.159 ± 2.5 × 10− 5 0.232 ± 2.8 × 10− 5

single-element 65/10/25 0.157 ± 5.3 × 10− 6 0.241 ± 1.9 × 10− 6

75/10/15 0.161 ± 3.3 × 10− 6 0.239 ± 2.8 × 10− 6

70/10/20 0.181 ± 1.4 × 10− 7 0.269 ± 5.4 × 10− 7

multi-element 65/10/25 0.179 ± 2.4 × 10− 7 0.243 ± 1.5 × 10− 7

75/10/15 0.181 ± 2.4 × 10− 5 0.272 ± 1.1 × 10− 5

Fig. 6. Comparison of ground-truth DO (mg/L) values and SMDF2-predicted ones for the Alabama dataset.

Fig. 7. MAEs of different models for DO prediction at horizons from 1 to 
5 steps.

Fig. 8. MSEs of different models for DO prediction at horizons from 1 to 
5 steps.
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nonlinear water quality dynamics, providing a relevant parallel to 
SMDF2’s design. Mean absolute error (MAE) [30] and mean squared 
error (MSE) [31] are used as evaluation metrics.

3.2.1. Single-element prediction
The Alabama dataset is used to implement single-element water 

quality prediction with SMDF2, which predicts future values of DO from 
its past values. Fig. 6 displays the ground truth and predicted values for 
DO with the prediction step size of 6. The red line represents the ground- 
truth result, while the blue line shows the predicted result.

SMDF2 is further validated in the short-term prediction of single- 
element water quality. Figs. 7 and 8 illustrate the MAE and MSE 
values for different models across prediction step lengths ranging from 1 
to 5. The results demonstrate that SMDF2 outperforms the other models 
in single-element prediction when the prediction step length is short.

The performance of SMDF2 for single-element long-term water 
quality prediction is also investigated. Table 3 presents the MAE and 
MSE results as the mean ± standard deviation over five independent 
runs for various models across prediction step sizes of 6, 12, 18, 24, and 
30. The results indicate that SMDF2 surpasses the other three models, 
with lower MAE and MSE values and an average improvement in pre
diction accuracy of 21.73 %. These results suggest that SMDF2 can 
effectively capture the temporal dependencies and seasonal patterns in 
single-element water quality series. The notable advantage in short-term 
forecasting indicates that the model architecture is highly responsive to 
recent variations in DO, while the consistent superiority in long-term 

horizons reflects its ability to preserve relevant trend information over 
extended periods. Beyond the quantitative results, it is worth noting that 
existing approaches have inherent limitations. CNN have been applied 
in water quality forecasting, usually perform well in capturing local 

Table 3 
Comparison of prediction results for DO across different models.a

Step Metric Transformer Informer Autoformer SMDF2

6 MAE 0.265 ± 0.00 0.283 ± 3.2 × 10− 4 0.324 ± 4.1 × 10− 4 0.232 ± 2.8 × 10− 5

MSE 0.219 ± 7.6 × 10− 8 0.230 ± 7.2 × 10− 4 0.272 ± 9.7 × 10− 4 0.158 ± 2.5 × 10− 5

12 MAE 0.342 ± 4.0 × 10− 8 0.340 ± 6.8 × 10− 4 0.342 ± 5.7 × 10− 3 0.283 ± 1.6 × 10− 5

MSE 0.321 ± 1.7 × 10− 8 0.299 ± 7.1 × 10− 4 0.304 ± 3.6 × 10− 3 0.220 ± 2.9 × 10− 5

18 MAE 0.338 ± 0.00 0.357 ± 8.9 × 10− 4 0.385 ± 3.8 × 10− 3 0.298 ± 2.6 × 10− 5

MSE 0.305 ± 1.2 × 10− 8 0.320 ± 1.0 × 10− 3 0.342 ± 2.1 × 10− 3 0.244 ± 2.9 × 10− 5

24 MAE 0.363 ± 1.7 × 10− 8 0.384 ± 1.1 × 10− 3 0.368 ± 7.2 × 10− 3 0.313 ± 1.8 × 10− 6

MSE 0.323 ± 0.00 0.355 ± 1.6 × 10− 3 0.345 ± 6.9 × 10− 3 0.264 ± 3.2 × 10− 6

30 MAE 0.367 ± 1.9 × 10− 8 0.388 ± 3.5 × 10− 4 0.391 ± 3.4 × 10− 3 0.321 ± 3.8 × 10− 6

MSE 0.372 ± 3.1 × 10− 8 0.359 ± 5.9 × 10− 4 0.386 ± 2.5 × 10− 3 0.281 ± 2.5 × 10− 6

a Note: Values in bold indicate the best results.

Fig. 9. Comparison of ground-truth pH values and SMDF2-predicted ones for the Hebei dataset.

Fig. 10. Comparison of ground-truth TN (mg/L) values and SMDF2-predicted ones for the Hebei dataset.

Fig. 11. MAEs of different models for pH prediction at horizons from 1 to 
5 steps.
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dependencies but struggle with long-term temporal patterns. 
Transformer-based models, including the baselines tested here, are 
effective at modeling global dependencies but may suffer from over
fitting on small-scale datasets and incur high computational costs. Our 
results align with these observations, although Transformer variants 
achieve competitive accuracy, SMDF2 consistently attains lower MAE 
and MSE, especially for short-term horizons, highlighting its ability to 
balance accuracy and efficiency in practical applications.

3.2.2. Multi-element prediction
SMDF2 is also applied to predict water quality in a multi-element 

manner. Specifically, pH is predicted with TN, DO, and EC, while TN 
is predicted with pH, DO, and EC. Figs. 9 and 10 display the ground truth 
and predicted values for pH and TN, respectively, with a prediction step 
of 6.

SMDF2 is subsequently validated for multi-element water quality 
prediction. The MAE values for various models with forecasting step 
lengths ranging from 1 to 5 for pH are illustrated in Fig. 11, while MSE 
values are presented in Fig. 12. Similarly, Fig. 13 shows the MAE values 
for TN prediction across different forecasting step lengths, and Fig. 14
displays the MSE values. These results indicate that SMDF2 outperforms 

the other three models in multi-element forecasting for shorter predic
tion lengths.

SMDF2’s performance is evaluated in multi-element long-term pre
diction of water quality series. MAE and MSE are reported as the mean 
± standard deviation over five independent runs for various models 
across prediction step lengths in 6, 12, 18, 24, and 30. The pH and TN 
prediction results are summarized in Table 4. SMDF2 demonstrates su
perior performance, achieving the lowest MAE and MSE values, with an 
average accuracy improvement of 17.95 % for pH prediction and 18.33 
% for TN prediction.

The improved performance in multi-element forecasting highlights 
SMDF2’s ability to leverage inter-variable relationships in water quality 
data. By jointly modeling multiple elements, the model benefits from 
complementary information, such as the correlation between DO and pH 
or TN, which can enhance predictive accuracy. The relatively larger 
gains in short-term horizons suggest that the cross-variable de
pendencies are most influential in capturing immediate fluctuations, 
while the sustained advantage in long-term horizons indicates that the 
decomposition-based architecture is capable of maintaining informative 
features across extended time spans.

3.2.3. Robustness under anomalous events
To further evaluate the robustness of the proposed model under rare 

or sudden conditions, we identified anomalous events in the test set 
using thresholds calculated from the training set to avoid data leakage. A 
point was considered anomalous when its standardized value was 
greater than three standard deviations from the training set mean, or 
when the standardized first-order difference was greater than three 
standard deviations. Consecutive anomalous points were merged into 
events, and each event was extended with a small context window. For 
the Alabama dataset with 1-hour sampling, the window length was plus 
or minus 6 h. For the Hebei dataset with 4-hour sampling, the window 
length was plus or minus two time steps. Events without enough his
torical input or a forecast horizon were excluded. Table 5 shows the 
number of events and the percentage of the test set they cover. We 
compared the MSE and MAE of each model on three subsets: the full test 
set, the anomalous subset, and the normal subset. Table 6 presents the 
ratio between the error on the anomalous subset and the error on the 
normal subset for both metrics. A smaller ratio means better robustness.

The proposed SMDF2 model consistently has the smallest increase in 
error across all datasets and prediction horizons.

Fig. 12. MSEs of different models for pH prediction at horizons from 1 to 
5 steps.

Fig. 13. MAEs of different models for TN prediction at horizons from 1 to 
5 steps.

Fig. 14. MSEs of different models for TN prediction at horizons from 1 to 
5 steps.
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3.3. Method validation

To ensure that SMDF2 is accurate, practical, and robust, this section 
presents a comprehensive validation of the proposed method from three 
perspectives: computational efficiency, component contribution, and 
training convergence.

3.3.1. Computational efficiency analysis
To further evaluate the practical applicability of SMDF2, its 

computational complexity, model size, and runtime were compared 
with those of Transformer, Informer, and Autoformer under a prediction 
step of 6. Table 7 summarizes the results in terms of floating-point op
erations (FLOPs), number of parameters, single-element prediction time, 
and multi-element prediction time.

The results show that SMDF2 requires fewer computations than 
Transformer and Informer, while maintaining a comparable model size 
to Transformer and a smaller size than Informer. In single-element 
prediction, SMDF2 runs significantly faster than Autoformer and ach
ieves performance close to the fastest baseline. In multi-element pre
diction, SMDF2 demonstrates the shortest runtime among all compared 
models, highlighting its superior inference efficiency.

Overall, SMDF2 maintains high prediction accuracy while reducing 
computational cost and improving inference speed. These advantages 
make it suitable for real-world water quality monitoring applications, 
especially in scenarios where real-time performance is essential.

3.3.2. Ablation experiment
The effect of SG filters and MSTL on SMDF2 both in single-element 

experiments and multi-elements is also tested. Specifically, the struc
ture of.

SMDF2 is decomposed step by step, and their effect through exper
iments is explored. Table 8 shows the result of single-element prediction 
with the step lengths of 1 to 9 for DO. Table 9 demonstrates the results of 
multi-element prediction experiments with step lengths of 1 to 9 for pH 
and TN, respectively. Comparing results with and without the SG filter 
or MSTL shows that both are essential for improving forecasting 
performance.

3.3.3. Training convergence analysis
The convergence behavior of SMDF2 is evaluated by comparing its 

training loss curves with those of baseline models. SMDF2 reaches stable 
convergence in fewer epochs and maintains a lower loss throughout 
training, as shown in Fig. 15. The relatively small gap between its 
training and validation losses indicates good generalization without 
clear signs of overfitting. This faster and more stable convergence can be 
linked to the model’s design, where the SG filters and MSTL module 
facilitate efficient feature extraction and optimization.

Overall, the proposed SMDF2 demonstrates stable and strong pre
dictive performance across diverse scenarios, including different 
geographical regions such as Alabama in the United States and Hebei in 
China, single-element and multi-element prediction tasks, varied dataset 
partitions, and anomalous water quality events. These results suggest 
that the SMDF2 has the potential to generalize beyond the specific 
conditions seen during training.

Table 4 
Comparison of prediction results for different models.a

Target Step Metric Transformer Informer Autoformer SMDF2

pH 6 MAE 0.387 ± 6.3 × 10− 8 0.372 ± 5.4 × 10− 3 0.351 ± 3.2 × 10− 3 0.321 ± 1.4 × 10− 7

MSE 0.328 ± 5.1 × 10− 8 0.299 ± 5.6 × 10− 3 0.269 ± 4.5 × 10− 3 0.211 ± 5.4 × 10− 7

12 MAE 0.455 ± 1.8 × 10− 8 0.384 ± 2.0 × 10− 3 0.391 ± 1.2 × 10− 3 0.349 ± 3.1 × 10− 5

MSE 0.382 ± 2.2 × 10− 8 0.325 ± 1.9 × 10− 3 0.321 ± 2.5 × 10− 3 0.248 ± 2.4 × 10− 5

18 MAE 0.468 ± 2.3 × 10− 7 0.439 ± 8.4 × 10− 4 0.397 ± 5.6 × 10− 3 0.387 ± 1.1 × 10− 6

MSE 0.421 ± 1.7 × 10− 7 0.381 ± 7.9 × 10− 4 0.351 ± 7.7 × 10− 3 0.296 ± 5.7 × 10− 7

24 MAE 0.551 ± 5.5 × 10− 8 0.475 ± 6.8 × 10− 4 0.436 ± 3.9 × 10− 3 0.438 ± 5.6 × 10− 7

MSE 0.568 ± 4.1 × 10− 8 0.442 ± 3.7 × 10− 4 0.391 ± 2.8 × 10− 3 0.381 ± 3.9 × 10− 7

30 MAE 0.575 ± 7.3 × 10− 8 0.567 ± 1.8 × 10− 3 0.466 ± 6.4 × 10− 3 0.447 ± 8.1 × 10− 8

MSE 0.597 ± 8.5 × 10− 8 0.525 ± 1.3 × 10− 3 0.438 ± 7.3 × 10− 3 0.396 ± 3.5 × 10− 8

TN 6 MAE 0.276 ± 2.9 × 10− 8 0.310 ± 1.0 × 10− 3 0.377 ± 2.2 × 10− 4 0.266 ± 4.6 × 10− 8

MSE 0.189 ± 1.7 × 10− 8 0.226 ± 1.0 × 10− 3 0.311 ± 3.5 × 10− 4 0.179 ± 6.8 × 10− 8

12 MAE 0.352 ± 4.1 × 10− 8 0.379 ± 2.2 × 10− 3 0.419 ± 5.3 × 10− 4 0.317 ± 4.4 × 10− 5

MSE 0.273 ± 5.7 × 10− 8 0.296 ± 1.9 × 10− 3 0.380 ± 4.1 × 10− 4 0.242 ± 2.0 × 10− 5

18 MAE 0.421 ± 8.3 × 10− 8 0.413 ± 4.9 × 10− 3 0.405 ± 1.5 × 10− 3 0.348 ± 5.1 × 10− 6

MSE 0.356 ± 7.6 × 10− 8 0.337 ± 3.1 × 10− 3 0.346 ± 2.4 × 10− 3 0.273 ± 8.3 × 10− 7

24 MAE 0.453 ± 3.1 × 10− 8 0.446 ± 1.7 × 10− 4 0.419 ± 8.7 × 10− 4 0.378 ± 4.6 × 10− 8

MSE 0.391 ± 2.7 × 10− 8 0.369 ± 3.7 × 10− 4 0.368 ± 7.4 × 10− 4 0.309 ± 6.9 × 10− 8

30 MAE 0.515 ± 5.7 × 10− 8 0.464 ± 4.1 × 10− 4 0.416 ± 6.9 × 10− 4 0.403 ± 4.8 × 10− 7

MSE 0.492 ± 6.3 × 10− 8 0.400 ± 2.0 × 10− 4 0.360 ± 7.3 × 10− 4 0.332 ± 2.9 × 10− 7

a Note: Values in bold indicate the best results.

Table 5 
Number and coverage of anomalous events in the test sets.

Dataset Variable(s) Number of events Coverage %

Alabama DO 45 6.2
Hebei pH, TN, DO, EC 38 7.5

Table 6 
Error ratios between anomalous and normal subsets.a

Dataset and Step Transformer Informer Autoformer SMDF2

Alabama 1 step 1.38 1.34 1.32 1.16
Alabama 6 step 1.41 1.36 1.33 1.18
Hebei pH 6 step 1.19 1.22 1.20 1.16
Hebei TN 6 step 1.23 1.26 1.22 1.15

a Note: Values in bold indicate the best results.

Table 7 
Computational efficiency comparison across models.a

Metric Transformer Informer Autoformer SMDF2

FLOPs 8.89 × 1010 6.58 × 1010 4.44 £ 1010 5.51 ×
1010

Number of 
Parameters

2.21 × 107 2.37 × 107 2.21 × 107 2.21 £ 107

Single-element 
Duration

2.317 ±
0.006

1.998 ±
0.003

6.538 ±
0.205

2.045 ±
0.033

Multi-element 
Duration

0.863 ±
0.088

0.649 ±
0.025

2.484 ±
0.105

0.554 ±
0.005

a Note: Values in bold indicate the best results.
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4. Conclusions

The essence of water quality forecasting is time series forecasting, 
which refers to analyzing past data on water quality and reflecting 
future trends of indicators in water. Water quality may vary due to 
seasonal changes, weather conditions, and different aquatic environ
ments, leading to nonlinearity in water quality data. Traditional pre
diction models are unable to capture the nonlinear features. This work 
introduces a hybrid water quality prediction model called SMDF2, 
which integrates the Savitsky-Golay filter, Multi-seasonal trend 
decomposition using loss, Discrete Fourier Transform, Frequency- 

enhanced block, and Frequency-enhanced attention, serving for elimi
nating noise and outliers, extracting multi-seasonal components and 
trend components for time series, frequency domain time domain 
interconversion, and capturing serial correlation, respectively. Experi
mental results with real-world water quality datasets show that SMDF2 
achieves higher accuracy in single-element and multi-element predic
tion than the other three state-of-the-art forecasting models.

Future research will fully consider the broader factors influencing 
water environments, including meteorological conditions, hydrological 
data, and pollutant emission data. [32,33] have clearly demonstrated 
the impact of atmospheric moisture on precipitation, which is also a key 
factor influencing water quality indicators. Therefore, by integrating 
these data with water quality time-series data using advanced multi- 
modal data fusion techniques [34], complementary information can 
be extracted from multi-source data, thereby enhancing the accuracy of 
predictive models. Additionally, to optimize accuracy and computa
tional efficiency in complex models, we will explore intelligent param
eter tuning based on efficient optimization frameworks [35], ultimately 
supporting more scientifically informed environmental monitoring and 
evidence-based decision-making.
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Table 8 
Ablation result of SG filter and MSTL in SMDF2 for single-element prediction.a

Step Original SG MSTL SG + MSTL

MSE MAE MSE MAE MSE MAE MSE MAE

1 0.124 0.182 0.052 0.127 0.073 0.146 0.039 0.116
2 0.165 0.227 0.095 0.187 0.114 0.199 0.083 0.165
3 0.181 0.240 0.135 0.203 0.156 0.227 0.114 0.192
4 0.202 0.257 0.150 0.225 0.169 0.239 0.135 0.211
5 0.221 0.272 0.173 0.244 0.195 0.249 0.161 0.230
6 0.217 0.279 0.169 0.243 0.190 0.254 0.158 0.232
7 0.225 0.283 0.186 0.259 0.212 0.273 0.176 0.248
8 0.231 0.283 0.197 0.268 0.219 0.281 0.183 0.257
9 0.243 0.296 0.218 0.281 0.233 0.291 0.197 0.265

a Note: Values in bold indicate the best results.

Table 9 
Ablation result of SG filter and MSTL in SMDF2 for multi-element prediction.a

Target Step Original SG MSTL SG + MSTL

MSE MAE MSE MAE MSE MAE MSE MAE

pH 1 0.196 0.302 0.133 0.257 0.164 0.278 0.129 0.257
2 0.241 0.323 0.204 0.319 0.214 0.199 0.174 0.293
3 0.269 0.350 0.241 0.347 0.252 0.358 0.189 0.305
4 0.275 0.367 0.251 0.354 0.257 0.359 0.196 0.309
5 0.286 0.374 0.261 0.362 0.269 0.364 0.199 0.310
6 0.299 0.385 0.263 0.364 0.281 0.372 0.211 0.321
7 0.311 0.392 0.277 0.374 0.293 0.380 0.214 0.323
8 0.320 0.399 0.285 0.379 0.304 0.391 0.223 0.332
9 0.328 0.404 0.296 0.387 0.315 0.398 0.226 0.334

TN 1 0.149 0.234 0.080 0.187 0.108 0.205 0.067 0.164
2 0.198 0.283 0.149 0.257 0.169 0.247 0.106 0.205
3 0.209 0.288 0.163 0.262 0.180 0.269 0.145 0.247
4 0.223 0.299 0.181 0.275 0.192 0.269 0.161 0.252
5 0.224 0.300 0.190 0.283 0.197 0.275 0.179 0.265
6 0.237 0.311 0.202 0.293 0.208 0.182 0.186 0.276
7 0.241 0.315 0.211 0.301 0.215 0.308 0.205 0.291
8 0.254 0.324 0.223 0.309 0.234 0.314 0.214 0.298
9 0.260 0.328 0.232 0.316 0.241 0.319 0.227 0.308

a Note: Values in bold indicate the best results.

Fig. 15. Training loss curves of SMDF2, Autoformer, Informer, and Trans
former models over 30 epochs.
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