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ARTICLE INFO ABSTRACT

Editor: Zhugen Yang Water quality forecasting methods can reflect the water quality situation and development trend in the short or
long-term future and provide important support for water environment management. Due to the influence of
other factors fluctuating in the water environment and errors in collection equipment, water quality time series
data are characterized by instability and high nonlinearity, and a nonlinear regression problem of non-smooth
series data is difficult in the prediction field. This work proposes a hybrid model for water quality prediction
called SMDF2 to improve the prediction accuracy. SMDF2 integrates the Savitsky-Golay (SG) filter, Multi-sea-
sonal trend decomposition using loss (MSTL), Discrete Fourier Transform (DFT), Frequency Enhanced Block
(FEB) and Frequency Domain Enhanced Attention (FEA) in an encoder-decoder architecture. The SG filter is
employed to smooth out the noise to diminish the instability in time series. MSTL is used to extract periodic and
trend components for the nonlinear sequences, and DFT is utilized to achieve the conversion between the time
domain and the frequency domain. FEB and FEA are employed for the frequency-domain feature extraction and
the frequency-domain feature correlation learning. Experimental results with real domestic and international
water environment datasets for both long-term and short-term predictions demonstrate that SMDF2 surpasses
various advanced models in accuracy for both single-element and multi-element predictions. Specifically, it
improves prediction accuracy by an average of 21.73 % for single-element tasks and 18.14 % for multi-element
tasks.
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sophisticated data-driven models for water quality time series
forecasting.

1. Introduction

Water quality prediction, which forecasts future changes in water
quality by analyzing historical data, has become a central objective of
water quality monitoring. This technology provides critical decision-
making support for water environment management and pollution
control, playing an indispensable role in preventing water pollution and
safeguarding ecological health. Therefore, developing stable and highly
efficient predictive models for water quality is crucial [1-3].

Water quality prediction methods fall into two broad categories:
mechanistic and data-driven models. Data-driven approaches include
traditional statistical methods and recent deep learning models. Tradi-
tional techniques extract linear relationships: autoregressive integrated
moving average models [4-6] provide recursive sequential predictions,
while support vector machines [7] flexibly handle low and high-
dimensional data. Advances in deep learning [8] are enabling more
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Recurrent neural networks (RNNs) [9,10] demonstrate strong po-
tential for time series forecasting, where gated architectures like long
short-term memory (LSTM) networks [11-13] and gated recurrent units
[14] effectively address gradient issues through gated mechanisms.
Autoregressive RNNs enable probabilistic forecasting [15] using exten-
sive temporal data. Recently, Transformers [16] have gained promi-
nence for capturing long-range dependencies via attention mechanisms,
with significant enhancements including: Informer [17], which employs
ProbSparse self-attention and distillation for linear-complexity long-
sequence processing; Autoformer [18] utilizing seasonal-trend decom-
position and autocorrelation mechanisms for multi-resolution analysis;
and Pyraformer [19] implementing hierarchical pyramidal attention
through tree structures to capture multi-scale dependencies efficiently.

Due to the influence of environmental factors and data acquisition
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Fig. 1. Time series of dissolved oxygen (DO, mg/L) in surface waters of Alabama, USA.

equipment errors, water quality time series data typically exhibit
instability and high nonlinearity. Addressing the nonlinear regression
problems associated with processing such non-stationary sequential
data represents a significant challenge in the current field of prediction.
Specifically, water quality data often contains substantial noise and
outliers, which interfere with subsequent analysis and may lead to
model overfitting. Simultaneously, influenced by regular environmental
factors such as seasons and weather, water quality data demonstrates
complex periodic and trend components, requiring models capable of
capturing intricate patterns. However, conventional forecasting
methods struggle to effectively extract and utilize these features to
enhance model performance. Furthermore, when processing complex
sequences, relying solely on time-domain analysis may inadequately
reveal all intrinsic patterns within the data, particularly exhibiting
limitations in capturing dynamic variations at different frequencies.
Finally, efficiently identifying key features and their inter-correlations
in processed data is crucial for improving model performance.

To address the aforementioned challenges and enhance water quality
prediction accuracy, we propose a hybrid forecasting model called
SMDF2. This model integrates the Savitsky-Golay (SG) filter [20], Multi-
seasonal trend decomposition using loss (MSTL) [21], Discrete Fourier
Transform (DFT) [22], Frequency-enhanced block (FEB), and Fre-
quency-enhanced attention (FEA) [23]. Key contributions of this work
are summarized as follows.

To capture unsteady and nonlinear features of water quality data,
SMDF2 adopts the SG filter to mitigate outliers and noise. Mean-
while, SMDF2 innovatively uses MSTL to decompose water quality
data, which extracts multi-seasonal components and trend ones of
multiple indicators in the water quality data to capture global pat-
terns of the series.

SMDF2 combines DFT for time-frequency domain interconversion
and uses FEB and FEA for frequency-domain feature extraction and
capturing frequency-domain feature correlations.

e Experimental results from both long-term and short-term predictions
with actual domestic and international water quality data demon-
strate that SMDF2 outperforms other models with respect to accu-
racy for both single-factor and multi-factor predictions.

The experiment utilized two internationally representative river

monitoring datasets:

e Wu Village Station, Langfang, China (39.81444°N, 116.942629°E), a
critical node in the North China Plain’s water quality monitoring
network.

e USGS 02423130, Alabama River at Lees County, USA
(32.379000°N,-86.308000°W), a federally managed station in the
southeastern U.S. agricultural belt.

To clarify, we highlight key differences between the current work
and our previous study [24] as follows.

e The study in [24] exclusively employs attention for feature extrac-
tion and learning, whereas this work introduces convolution layers
in the FEB module to capture features. Integrating a convolutional
neural network (CNN) with self-attention enables simultaneous
consideration of local and global information in handling time series
data, enhancing both the model’s prediction accuracy and its
generalization ability.

The study in [24] only uses a dataset spanning from August 2018 to
December 2021 from a river water quality automatic station in Hebei
Province. Unlike that, this work additionally uses a water quality
dataset obtained from a river segment of the Alabama River spanning
from May 2017 to August 2019 for validating the prediction accu-
racy of SMDF2.

The study in [24] exclusively conducts multi-element water quality
prediction for the potential of hydrogen (pH). In contrast, this work
introduces single-element water quality prediction. It extends multi-
element experiments to include total nitrogen (TN) prediction, of-
fering a more thorough evaluation of SMDF2’s prediction
performance.

2. Material and methods
2.1. Dataset description

Experiments adopt two data sets for single-element and multi-
element prediction, respectively. The data for the single-element
experiment includes dissolved oxygen (DO) detected by USGS Station
02423130 on the Alabama River at Lees County, USA (32.379000°N,

pH in water data from Langfang, China
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Fig. 2. Time series of potential of hydrogen (pH) in surface waters of Langfang, Hebei, China.
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Fig. 3. Time series of total nitrogen (TN, mg/L) in surface waters of Langfang, Hebei, China
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Fig. 4. Structure of SMDF2. SMDF2 is composed of N encoders and M decoders. h represents the time sequence node, S represents the seasonal component, and E
represents the trend component. The lower corner marker represents the encoder or decoder. The upper corner marker represents the number of layers passed
through, e.g., S¥* denotes the seasonal component output by the third decomposition block after the decoder in the M th layer.

-86.308000°W). Exploration Service from May 2017 to Aug. 2019, with
a time point interval of one hour and more than 19,800 samples in total.
The multi-element experiments utilize real-time data collected from Wu
Village Automatic Monitoring Station in Langfang, Hebei Province,
China (39.81444°N, 116.94263°E). The data collection period spans
from Aug. 2018 to Dec. 2021. This high-resolution regional monitoring
exemplifies the increasing emphasis on quality data in hydrology. As
underscored by [25] in their global isotope dataset analysis, robust
observational foundations are essential for advancing predictive accu-
racy. The dataset comprises approximately 6500 samples, and the
sampling interval is 4 h. Water quality indicators include pH, TN, DO,

and electrical conductivity (EC). The DO time series in the Alabama
dataset and pH and TN in the Hebei dataset are presented in Figs. 1-3,
respectively.

2.2. SMDF2

This section outlines the overall architecture of SMDF2, as shown in
Fig. 4. The design of SMDF2 integrates the SG filter, MSTL, DFT, FEB,
and FEA modules to address the challenges of instability, high nonlin-
earity, and multi-scale variability in water quality time series. The
integration is motivated by the complementary strengths of these
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Fig. 5. Example MSTL decomposition of pH data into trend, seasonal components (periods 24 and 168), and residual.

components. The SG filter effectively reduces high-frequency noise and
outliers without distorting underlying trends, which is crucial for non-
stationary environmental data. The MSTL algorithm enables decompo-
sition into multiple seasonal, trend, and residual components, thereby
capturing complex periodicity and improving robustness under envi-
ronmental variability. The DFT facilitates time—frequency domain
transformation, revealing periodicity, frequency distribution, and other
informative spectral features for prediction. Building on evidence that
sophisticated feature integration frameworks, such as the trustworthy
multi-focus fusion strategy of [26] can significantly enhance classifica-
tion and prediction in complex environmental systems, SMDF2 in-
corporates attention mechanisms in FEB and FEA to strengthen
nonlinear feature extraction and correlation learning across nodes.
These modules extend the capabilities of conventional self- and cross-
attention by enhancing frequency-domain feature learning, enabling
the model to capture both local and global nonlinear correlations be-
tween nodes in multi-element water quality series.

2.2.1. Savitsky-Golay filter

The SG filter is applied to smooth the water quality data. A poly-
nomial curve is fitted with least squares within a given data window, and
the smoothed data points are obtained by calculating the derivatives of

measurement pointish=(-m, -m+1,..,0,1, .., m—1,m). h [e] is
the eth output data point. The data points from h[e — m] to h[e + m] are
neighboring to the eth data point. c is a vector of coefficients of the SG
filter, which depends on the window length (g) and the polynomial order
(p). g determines the number of neighboring data points used for p, while
p determines the order of the fitted polynomial.

2.2.2. Multi-seasonal trend decomposition using loss

Water quality indicators are affected by seasons, climate, human
factors, and usually exhibit complex seasonal patterns that may vary
across time scales. As demonstrated in studies of environmental vari-
ability [27], such complexity necessitates advanced decomposition
methods. Existing sequence decomposition techniques can only extract a
single seasonal component, limiting their accuracy. In contrast, MSTL
allows for multiple seasonal parameters to be specified, enabling sepa-
ration of complex seasonal patterns. To fully capture the periodicity of
water quality series and enhance prediction robustness under environ-
mental variability, SMDF2 employs the MSTL algorithm to decompose
the series into multiple seasonal, trend, and residual components. MSTL
obtains extremely accurate seasonal components with low computa-
tional cost. The formula is given as:

polynomials. The SG filter is computationally fast. It has low storage Ye=EtSitt. +&0+R t=1...T &)
requirements and can extract valuable information from the underlying
. . Var(R,)
trends. It does not alter the underlying shape and length of the time Fgp = max| 0,1 “Var(E, + R 3)
t t

series. In addition, the SG filter can remove noise and unwanted signals
from the data samples, reducing interference with the prediction results.
The selection of the window size g and polynomial orders p was deter-
mined empirically. A comparative analysis of different parameter set-
tings is presented in Section 3.1. The formula of the SG filter is shown as
follows:

2m

hle] = Zc[k]-h[e+k—m] m

k=0

where the length of the filter window is g = 2 m + 1, and each

B __Var(Ry)
Fs = max (07 1 V4ar(st n Rt)) 4

where t represents a specific time point, Y is a time series containing T
time points, E; signifies the trend value obtained by decomposing Y at
time point t, Sn, indicates the nth seasonal value acquired through
decomposition at time point t, and R, represents the residual value
derived from decomposing Y at time point t. Fg and Fs represent trend
intensity and seasonal intensity, respectively.

The trend component captures lower-frequency or long-lasting
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changes in the time series, while the seasonal component represents
changes that occur at regular intervals. The residual component repre-
sents the remaining value of the original time series after removing both
the trend and seasonal components. The predicted pH values are
decomposed using MSTL, as shown in Fig. 5. In implementation, the
MSTL decomposition was performed using the stats models library [28].
The seasonal periods were set to (24, 168), which corresponds to daily
and weekly cycles when the data are sampled at hourly resolution. For
the dataset with four-hour intervals, the same configuration equiva-
lently captures fluctuations at approximately four-day and four-week
scales. The trend window was set to 101 to ensure sufficient smooth-
ing of long-term variations, while seasonal smoothing was constrained
to a constant level. This configuration allows MSTL to effectively sepa-
rate high-frequency daily variations from longer-term weekly fluctua-
tions, while preserving interpretable trend and residual components.

2.2.3. Discrete Fourier transform

Frequency-domain signals can better reveal features such as peri-
odicity, frequency distribution, and energy distribution of the data,
which provide more informativeness during the model training.
Consequently, the time-domain signals are transformed into frequency-
domain ones for feature learning. DFT is applied to FEB and FEA in
SMDF2. In implementation, instead of utilizing the entire frequency
spectrum, a fixed number of 64 frequency modes are retained. This
strategy reduces computational complexity to a linear scale with respect
to sequence length, while ensuring that the main periodic information of
the series is preserved. The time domain is converted to the frequency
domain with the discrete Fourier variation & in (5). The inverse discrete
Fourier variation &' realizes the conversion of the frequency domain
back to the time domain in (6).

T-1

h=Y he ™, 1=1.2,..L 5)
n=0
L-1

ha= he??r, n=12..,T 6)
L=0

where hy, is the nth time point in the time series. j represents an imagi-
nary unit, and h; is the Ith complex number in the frequency domain.

jonilt. . . .
e7?'Tis a complex exponential function representing the complex

amplitude value and phase information in h;.

2.2.4. Frequency enhanced block

FEB is similar to the traditional Transformer’s self-attention, which
realizes the extraction of local features from the input time series.
However, SMDF2 uses a convolutional layer in FEB, which is more
useful for capturing local features in the time series. FEB is employed in
both the encoder and decoder. Its functions are frequency domain pro-
jection, random sampling, feature learning, and frequency domain
complementation.

e Frequency domain projection: First the input h € R¥*Pis linearly
projected withw € R®Pto obtain x, ie.,x = h-w, adjusting the
length and increasing the nonlinearity. Then convert x from the time
domain to the frequency domain X by DFT.

Random sampling: This is done in the frequency domain with a very
small amount of Q randomly selected for retention. Typically, this
type of sampling is lossy to the input. However, this loss has minimal
impact on the accuracy of the final prediction. Due to the sparse
nature of frequency domain information and the prevalence of
random noise in the high-frequency components, much of this in-
formation can be discarded in time series prediction tasks. Random
sampling significantly reduces the length of the input vectors, thus
decreasing computational complexity and information redundancy,
so a random selection is employed:

Journal of Water Process Engineering 78 (2025) 108747
X = Choose(X) = Choose(Z(x)) (@]

e Feature learning: Randomly initialize the matrix I and multiply it
with randomly chosen frequency componentsX.

Frequency domain complementation: This process is the reverse of
frequency-domain sampling. To ensure that the projection back into
the frequency domain matches the dimensions of the original input

signal, the result of X® I must be zero-padded. Finally, it is trans-
formed back to the time domain using an inverse Fourier transform.
In practice, the number of retained frequency modes is fixed at 64 to
control complexity, and zero-padding is applied to restore the orig-
inal sequence length before the inverse transform.

FEB is defined as:

FEB(x) = 7! (Padding(X ® I)) (8)

where A is temporary matrix, i.e., A = X ® IandA € CY*P, Its element
Amdo, me(l, 2, ..., M) and d,&(1, 2, ..., D), is given as:

D
Am,do = ZXm=diIdi:dov"17 di € (1,2, D) (9)
d=1

2.2.5. Frequency domain enhanced attention

FEA is similar to cross-attention in a traditional Transformer, where
the signals from the encoder and decoder are subjected to cross-
attention operation to capture the intrinsic relationships between
these two sets of features. The implementation process of FEA is similar
to that of FEB, which is frequency domain projection, random sampling,
feature learning, and frequency domain complementation. Initially, the
FEA inputs include the keys (x € R**P) and values (v € R"*P) from the

encoder, as well as the queries (u € R™*P) from the decoder. FEA is
defined as:

X = Choose(Z(x))

V = Choose(Z(v)) (10$)
U = Choose(Z(u) )

~~T

~ ~ ~ X
Atten(X, V, U) = Softmax (L) U 11
d-
14

FEA(x,v,u) = 7' (Padding(Atten(X, V,U) ) ) 12)

where X, V and U are the frequency domain signals obtained by DFT of x,
vandu.

2.2.6. Mixture of experts decomposition blocks

SMDF2 employs MOE for progressive decomposition in both encoder
and decoder in addition to global MSTL multi-seasonal decomposition of
water quality time series. MOE contains a set of averaging filters of
different sizes that progressively separate the trend and the period from
the inputs to achieve optimization of the prediction results alternating
with the decomposition of the series. MOE is denoted as:

Hirena = Softmax(L(x) )*(P(x)) 13)

where the weights of the mixed trends are obtained by applying the
Softmax to L(x), and P (-) is the average filter with various sizes.

3. Results and discussion
3.1. Experimental setup

During the training stage, hyperparameters are selected through a
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Table 1
MSE and MAE of SG filters with different g and p.”

g p Alabama dataset Hebei dataset

MSE MAE MSE MAE
5 3 0.158 0.232 0.186 0.276
7 3 0.172 0.276 0.209 0.313
9 3 0.273 0.315 0.302 0.397
7 5 0.281 0.323 0.335 0.426
9 5 0.169 0.247 0.204 0.311
11 5 0.183 0.251 0.217 0.329
9 7 0.189 0.263 0.225 0.341
11 7 0.162 0.235 0.193 0.279

0.238 0.303 0.265 0.354

2 Note: Values in bold indicate the best results.

Table 2
SMDEF2’s Performance under different temporal split ratios.
Setting Split ratio MSE MAE
70/10/20 0.159 + 2.5 x 107> 0.232 + 2.8 x 107>
single-element 65/10/25 0.157 £5.3 x 107 0.241 +£1.9 x 107
75/10/15 0.161 + 3.3 x 107° 0.239 + 2.8 x 107°
70/10/20 0.181 £ 1.4 x 1077 0.269 + 5.4 x 1077
multi-element 65/10/25 0.179 + 2.4 x 1077 0.243+1.5x 1077
75/10/15 0.181 + 2.4 x 107> 0.272 + 1.1 x 107°

systematic process combining literature-based initial ranges, pre-
liminary sensitivity analysis, and iterative comparisons of prediction
results, and final values are set as follows. The number of attention heads
is 8, the batch size is 64, the number of input features in the encoder or
decoder is 512, the learning rate is 0.0001, the number of encoder layers
is 3, and the number of decoder layers is 2. The input step size is selected
from the set of {12, 24, 36, 48, 72, 96}. For the SG filter, its window size
is 5, and its polynomial order is 3. These values are chosen based on their
impact on MSE and MAE over multiple validation runs, balancing ac-
curacy and computational efficiency. Table 1 presents the MSE and MAE
results for SMDF2 with different SG filter window lengths (g) and
polynomial orders (p) with the prediction step of 6.

To prevent time series data leakage, the dataset is split into training,
validation, and testing sets strictly according to chronological order,
with a ratio of 7:1:2. No shuffling is applied before splitting, ensuring
that validation and testing data points are always temporally ahead of
the training set. All preprocessing steps are fitted using only the training
set statistics and then applied to the validation and test sets, thereby
avoiding any inadvertent exposure of future information during
training.

To assess robustness with respect to the temporal split, we evaluate
three alternative cut-offs for both single-element and multi-element
settings: 70/10/20 (baseline), 65/10/25, and 75/10/15 for train/val/
test. Each configuration is independently trained and evaluated five
times, and the mean + standard deviation of MSE and MAE for predic-
tion step 6 are reported. As shown in Table 2, results are consistent
across cut-offs and across single-element and multi-element settings,
indicating that conclusions are not artifacts of a particular split.
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3.2. Model prediction and comparison

To evaluate SMDF2’s performance in water quality time series pre-
diction, three advanced deep learning models, including Transformer,
Autoformer, and Informer, are selected for comparison. Additionally,
recent studies on fuzzy neural networks [29] have demonstrated the
efficacy of integrating fuzzy logic and neural networks for handling

2000 2500 3000

3500

4000

Fig. 6. Comparison of ground-truth DO (mg/L) values and SMDF2-predicted ones for the Alabama dataset.
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Table 3
Comparison of prediction results for DO across different models.”
Step Metric Transformer Informer Autoformer SMDF2
6 MAE 0.265 + 0.00 0.283 +3.2x 107 0.324 + 4.1 x107* 0.232 + 2.8 x 107°
MSE 0.219 £ 7.6 x 1078 0.230 £7.2 x 107* 0.272 £9.7 x 1074 0.158 + 2.5 x 107°
12 MAE 0.342 + 4.0 x 1078 0.340 + 6.8 x 107 0.342 £ 5.7 x 1073 0.283 + 1.6 x 107°
MSE 0.321 +£1.7 x 1078 0.299 + 7.1 x 107* 0.304 + 3.6 x 1073 0.220 + 2.9 x 107°
18 MAE 0.338 + 0.00 0.357 £ 8.9 x 107* 0.385 + 3.8 x 1073 0.298 + 2.6 x 107°
MSE 0.305+1.2 x 1078 0.320 + 1.0 x 1073 0.342 +2.1 x 1073 0.244 + 2.9 x 107°
24 MAE 0.363 +1.7 x 1078 0.384 +1.1 x 1073 0.368 +£7.2 x 1073 0.313+ 1.8 x 10°°
MSE 0.323 + 0.00 0.355 + 1.6 x 1072 0.345 + 6.9 x 1073 0.264 + 3.2 x 10°°
30 MAE 0.367 £1.9 x 1078 0.388 + 3.5 x 107 0.391 + 3.4 x 1073 0.321 + 3.8 x 107°°
MSE 0.372+3.1 x 1078 0.359 + 5.9 x 107 0.386 + 2.5 x 1073 0.281 + 2.5 x 10°°
2 Note: Values in bold indicate the best results.
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Fig. 9. Comparison of ground-truth pH values and SMDF2-predicted ones for the Hebei dataset.

nonlinear water quality dynamics, providing a relevant parallel to
SMDF2’s design. Mean absolute error (MAE) [30] and mean squared
error (MSE) [31] are used as evaluation metrics.

3.2.1. Single-element prediction

The Alabama dataset is used to implement single-element water
quality prediction with SMDF2, which predicts future values of DO from
its past values. Fig. 6 displays the ground truth and predicted values for
DO with the prediction step size of 6. The red line represents the ground-
truth result, while the blue line shows the predicted result.

SMDEF2 is further validated in the short-term prediction of single-
element water quality. Figs. 7 and 8 illustrate the MAE and MSE
values for different models across prediction step lengths ranging from 1
to 5. The results demonstrate that SMDF2 outperforms the other models
in single-element prediction when the prediction step length is short.

The performance of SMDF2 for single-element long-term water
quality prediction is also investigated. Table 3 presents the MAE and
MSE results as the mean + standard deviation over five independent
runs for various models across prediction step sizes of 6, 12, 18, 24, and
30. The results indicate that SMDF2 surpasses the other three models,
with lower MAE and MSE values and an average improvement in pre-
diction accuracy of 21.73 %. These results suggest that SMDF2 can
effectively capture the temporal dependencies and seasonal patterns in
single-element water quality series. The notable advantage in short-term
forecasting indicates that the model architecture is highly responsive to
recent variations in DO, while the consistent superiority in long-term
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Fig. 11. MAEs of different models for pH prediction at horizons from 1 to
5 steps.

horizons reflects its ability to preserve relevant trend information over
extended periods. Beyond the quantitative results, it is worth noting that
existing approaches have inherent limitations. CNN have been applied
in water quality forecasting, usually perform well in capturing local

800 1000 1200

Fig. 10. Comparison of ground-truth TN (mg/L) values and SMDF2-predicted ones for the Hebei dataset.
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Fig. 12. MSEs of different models for pH prediction at horizons from 1 to
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Fig. 13. MAEs of different models for TN prediction at horizons from 1 to
5 steps.

dependencies but struggle with long-term temporal patterns.
Transformer-based models, including the baselines tested here, are
effective at modeling global dependencies but may suffer from over-
fitting on small-scale datasets and incur high computational costs. Our
results align with these observations, although Transformer variants
achieve competitive accuracy, SMDF2 consistently attains lower MAE
and MSE, especially for short-term horizons, highlighting its ability to
balance accuracy and efficiency in practical applications.

3.2.2. Multi-element prediction

SMDF?2 is also applied to predict water quality in a multi-element
manner. Specifically, pH is predicted with TN, DO, and EC, while TN
is predicted with pH, DO, and EC. Figs. 9 and 10 display the ground truth
and predicted values for pH and TN, respectively, with a prediction step
of 6.

SMDF?2 is subsequently validated for multi-element water quality
prediction. The MAE values for various models with forecasting step
lengths ranging from 1 to 5 for pH are illustrated in Fig. 11, while MSE
values are presented in Fig. 12. Similarly, Fig. 13 shows the MAE values
for TN prediction across different forecasting step lengths, and Fig. 14
displays the MSE values. These results indicate that SMDF2 outperforms
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Fig. 14. MSEs of different models for TN prediction at horizons from 1 to
5 steps.

the other three models in multi-element forecasting for shorter predic-
tion lengths.

SMDF2’s performance is evaluated in multi-element long-term pre-
diction of water quality series. MAE and MSE are reported as the mean
+ standard deviation over five independent runs for various models
across prediction step lengths in 6, 12, 18, 24, and 30. The pH and TN
prediction results are summarized in Table 4. SMDF2 demonstrates su-
perior performance, achieving the lowest MAE and MSE values, with an
average accuracy improvement of 17.95 % for pH prediction and 18.33
% for TN prediction.

The improved performance in multi-element forecasting highlights
SMDF2’s ability to leverage inter-variable relationships in water quality
data. By jointly modeling multiple elements, the model benefits from
complementary information, such as the correlation between DO and pH
or TN, which can enhance predictive accuracy. The relatively larger
gains in short-term horizons suggest that the cross-variable de-
pendencies are most influential in capturing immediate fluctuations,
while the sustained advantage in long-term horizons indicates that the
decomposition-based architecture is capable of maintaining informative
features across extended time spans.

3.2.3. Robustness under anomalous events

To further evaluate the robustness of the proposed model under rare
or sudden conditions, we identified anomalous events in the test set
using thresholds calculated from the training set to avoid data leakage. A
point was considered anomalous when its standardized value was
greater than three standard deviations from the training set mean, or
when the standardized first-order difference was greater than three
standard deviations. Consecutive anomalous points were merged into
events, and each event was extended with a small context window. For
the Alabama dataset with 1-hour sampling, the window length was plus
or minus 6 h. For the Hebei dataset with 4-hour sampling, the window
length was plus or minus two time steps. Events without enough his-
torical input or a forecast horizon were excluded. Table 5 shows the
number of events and the percentage of the test set they cover. We
compared the MSE and MAE of each model on three subsets: the full test
set, the anomalous subset, and the normal subset. Table 6 presents the
ratio between the error on the anomalous subset and the error on the
normal subset for both metrics. A smaller ratio means better robustness.

The proposed SMDF2 model consistently has the smallest increase in
error across all datasets and prediction horizons.
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Table 4
Comparison of prediction results for different models.”
Target Step Metric Transformer Informer Autoformer SMDF2
pH 6 MAE 0.387 £ 6.3 x 1078 0.372+ 5.4 x 102 0.351 +£3.2 x 1073 0.321 +1.4 x 1077
MSE 0.328 £5.1 x 10~ 0.299 £ 5.6 x 102 0.269 £ 4.5 x 1073 0.211 £ 5.4 x 1077
12 MAE 0.455 + 1.8 x 1078 0.384 + 2.0 x 1073 0.391 £1.2 x 1073 0.349 + 3.1 x 107°
MSE 0.382+22x 1078 0.325+ 1.9 x 103 0.321 + 2.5 x 102 0.248 + 2.4 x 10°°
18 MAE 0.468 £ 2.3 x 1077 0.439 £ 8.4 x 1074 0.397 £5.6 x 1072 0.387 £ 1.1 x 10°°
MSE 0.421 +£1.7 x 1077 0.381 £7.9 x 107 0.351 £7.7 x 1073 0.296 + 5.7 x 1077
24 MAE 0.551 + 5.5 x 1078 0.475 + 6.8 x 107 0.436 + 3.9 x 1073 0.438 + 5.6 x 1077
MSE 0.568 + 4.1 x 107 0.442 + 3.7 x 1074 0.391 +2.8 x 1073 0.381 + 3.9 x 107/
30 MAE 0.575 + 7.3 x 1078 0.567 + 1.8 x 1073 0.466 + 6.4 x 1073 0.447 + 8.1 x 1078
MSE 0.597 + 8.5 x 1078 0.525 + 1.3 x 1073 0.438 +£7.3 x 1073 0.396 + 3.5 x 1078
TN 6 MAE 0.276 + 2.9 x 1078 0.310 £ 1.0 x 1072 0.377 £2.2 x 1074 0.266 + 4.6 x 10~°
MSE 0.189 + 1.7 x 1078 0.226 £ 1.0 x 1073 0.311 £ 3.5 x 107 0.179 + 6.8 x 1078
12 MAE 0.352 + 4.1 x 1078 0.379 £ 2.2 x 1073 0.419 £5.3 x 107 0.317 + 4.4 x 107°
MSE 0.273 + 5.7 x 1078 0.296 +£1.9 x 1073 0.380 + 4.1 x 107* 0.242 + 2.0 x 10°°
18 MAE 0.421 £ 8.3 x 1078 0.413 £ 4.9 x 1073 0.405 + 1.5 x 1073 0.348 £ 5.1 x 107°
MSE 0.356 + 7.6 x 1078 0.337 £ 3.1 x 1073 0.346 + 2.4 x 1073 0.273 + 8.3 x 1077
24 MAE 0.453 +3.1 x 1078 0.446 + 1.7 x 107 0.419 £ 8.7 x 107 0.378 + 4.6 x 1078
MSE 0.391 £ 2.7 x 1078 0.369 + 3.7 x 107* 0.368 +£ 7.4 x 107* 0.309 + 6.9 x 1078
30 MAE 0.515 + 5.7 x 1078 0.464 + 4.1 x 107* 0.416 £ 6.9 x 107 0.403 + 4.8 x 1077
MSE 0.492 + 6.3 x 1078 0.400 + 2.0 x 107 0.360 £ 7.3 x 107 0.332+ 2.9 x 1077

2 Note: Values in bold indicate the best results.

Table 5
Number and coverage of anomalous events in the test sets.

Dataset Variable(s) Number of events Coverage %
Alabama DO 45 6.2
Hebei pH, TN, DO, EC 38 7.5
Table 6
Error ratios between anomalous and normal subsets.”
Dataset and Step Transformer Informer Autoformer SMDF2
Alabama 1 step 1.38 1.34 1.32 1.16
Alabama 6 step 1.41 1.36 1.33 1.18
Hebei pH 6 step 1.19 1.22 1.20 1.16
Hebei TN 6 step 1.23 1.26 1.22 1.15
@ Note: Values in bold indicate the best results.
Table 7
Computational efficiency comparison across models.”
Metric Transformer Informer Autoformer SMDF2
FLOPs 8.89 x 10'° 6.58 x 10'°  4.44 x 10’ 551 x
1010
Number of 2.21 x 107 2.37 x 107 2.21 x 107 2.21 x 107
Parameters
Single-element 2.317 = 1.998 + 6.538 + 2.045 +
Duration 0.006 0.003 0.205 0.033
Multi-element 0.863 + 0.649 + 2.484 + 0.554 +
Duration 0.088 0.025 0.105 0.005

2 Note: Values in bold indicate the best results.
3.3. Method validation

To ensure that SMDF2 is accurate, practical, and robust, this section
presents a comprehensive validation of the proposed method from three
perspectives: computational efficiency, component contribution, and
training convergence.

3.3.1. Computational efficiency analysis

To further evaluate the practical applicability of SMDF2, its
computational complexity, model size, and runtime were compared
with those of Transformer, Informer, and Autoformer under a prediction
step of 6. Table 7 summarizes the results in terms of floating-point op-
erations (FLOPs), number of parameters, single-element prediction time,
and multi-element prediction time.

The results show that SMDF2 requires fewer computations than
Transformer and Informer, while maintaining a comparable model size
to Transformer and a smaller size than Informer. In single-element
prediction, SMDF2 runs significantly faster than Autoformer and ach-
ieves performance close to the fastest baseline. In multi-element pre-
diction, SMDF2 demonstrates the shortest runtime among all compared
models, highlighting its superior inference efficiency.

Overall, SMDF2 maintains high prediction accuracy while reducing
computational cost and improving inference speed. These advantages
make it suitable for real-world water quality monitoring applications,
especially in scenarios where real-time performance is essential.

3.3.2. Ablation experiment

The effect of SG filters and MSTL on SMDF2 both in single-element
experiments and multi-elements is also tested. Specifically, the struc-
ture of.

SMDF?2 is decomposed step by step, and their effect through exper-
iments is explored. Table 8 shows the result of single-element prediction
with the step lengths of 1 to 9 for DO. Table 9 demonstrates the results of
multi-element prediction experiments with step lengths of 1 to 9 for pH
and TN, respectively. Comparing results with and without the SG filter
or MSTL shows that both are essential for improving forecasting
performance.

3.3.3. Training convergence analysis

The convergence behavior of SMDF2 is evaluated by comparing its
training loss curves with those of baseline models. SMDF2 reaches stable
convergence in fewer epochs and maintains a lower loss throughout
training, as shown in Fig. 15. The relatively small gap between its
training and validation losses indicates good generalization without
clear signs of overfitting. This faster and more stable convergence can be
linked to the model’s design, where the SG filters and MSTL module
facilitate efficient feature extraction and optimization.

Overall, the proposed SMDF2 demonstrates stable and strong pre-
dictive performance across diverse scenarios, including different
geographical regions such as Alabama in the United States and Hebei in
China, single-element and multi-element prediction tasks, varied dataset
partitions, and anomalous water quality events. These results suggest
that the SMDF2 has the potential to generalize beyond the specific
conditions seen during training.
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Table 8
Ablation result of SG filter and MSTL in SMDF2 for single-element prediction.”
Step Original SG MSTL SG + MSTL
MSE MAE MSE MAE MSE MAE MSE MAE
1 0.124 0.182 0.052 0.127 0.073 0.146 0.039 0.116
2 0.165 0.227 0.095 0.187 0.114 0.199 0.083 0.165
3 0.181 0.240 0.135 0.203 0.156 0.227 0.114 0.192
4 0.202 0.257 0.150 0.225 0.169 0.239 0.135 0.211
5 0.221 0.272 0.173 0.244 0.195 0.249 0.161 0.230
6 0.217 0.279 0.169 0.243 0.190 0.254 0.158 0.232
7 0.225 0.283 0.186 0.259 0.212 0.273 0.176 0.248
8 0.231 0.283 0.197 0.268 0.219 0.281 0.183 0.257
9 0.243 0.296 0.218 0.281 0.233 0.291 0.197 0.265
@ Note: Values in bold indicate the best results.
Table 9
Ablation result of SG filter and MSTL in SMDF2 for multi-element prediction.”
Target Step Original SG MSTL SG + MSTL
MSE MAE MSE MAE MSE MAE MSE MAE
pH 1 0.196 0.302 0.133 0.257 0.164 0.278 0.129 0.257
2 0.241 0.323 0.204 0.319 0.214 0.199 0.174 0.293
3 0.269 0.350 0.241 0.347 0.252 0.358 0.189 0.305
4 0.275 0.367 0.251 0.354 0.257 0.359 0.196 0.309
5 0.286 0.374 0.261 0.362 0.269 0.364 0.199 0.310
6 0.299 0.385 0.263 0.364 0.281 0.372 0.211 0.321
7 0.311 0.392 0.277 0.374 0.293 0.380 0.214 0.323
8 0.320 0.399 0.285 0.379 0.304 0.391 0.223 0.332
9 0.328 0.404 0.296 0.387 0.315 0.398 0.226 0.334
TN 1 0.149 0.234 0.080 0.187 0.108 0.205 0.067 0.164
2 0.198 0.283 0.149 0.257 0.169 0.247 0.106 0.205
3 0.209 0.288 0.163 0.262 0.180 0.269 0.145 0.247
4 0.223 0.299 0.181 0.275 0.192 0.269 0.161 0.252
5 0.224 0.300 0.190 0.283 0.197 0.275 0.179 0.265
6 0.237 0.311 0.202 0.293 0.208 0.182 0.186 0.276
7 0.241 0.315 0.211 0.301 0.215 0.308 0.205 0.291
8 0.254 0.324 0.223 0.309 0.234 0.314 0.214 0.298
9 0.260 0.328 0.232 0.316 0.241 0.319 0.227 0.308

@ Note: Values in bold indicate the best results.
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Fig. 15. Training loss curves of SMDF2, Autoformer, Informer, and Trans-
former models over 30 epochs.

4. Conclusions

The essence of water quality forecasting is time series forecasting,
which refers to analyzing past data on water quality and reflecting
future trends of indicators in water. Water quality may vary due to
seasonal changes, weather conditions, and different aquatic environ-
ments, leading to nonlinearity in water quality data. Traditional pre-
diction models are unable to capture the nonlinear features. This work
introduces a hybrid water quality prediction model called SMDF2,
which integrates the Savitsky-Golay filter, Multi-seasonal trend
decomposition using loss, Discrete Fourier Transform, Frequency-

10

enhanced block, and Frequency-enhanced attention, serving for elimi-
nating noise and outliers, extracting multi-seasonal components and
trend components for time series, frequency domain time domain
interconversion, and capturing serial correlation, respectively. Experi-
mental results with real-world water quality datasets show that SMDF2
achieves higher accuracy in single-element and multi-element predic-
tion than the other three state-of-the-art forecasting models.

Future research will fully consider the broader factors influencing
water environments, including meteorological conditions, hydrological
data, and pollutant emission data. [32,33] have clearly demonstrated
the impact of atmospheric moisture on precipitation, which is also a key
factor influencing water quality indicators. Therefore, by integrating
these data with water quality time-series data using advanced multi-
modal data fusion techniques [34], complementary information can
be extracted from multi-source data, thereby enhancing the accuracy of
predictive models. Additionally, to optimize accuracy and computa-
tional efficiency in complex models, we will explore intelligent param-
eter tuning based on efficient optimization frameworks [35], ultimately
supporting more scientifically informed environmental monitoring and
evidence-based decision-making.
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