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Abstract—Nowadays, smart mobile devices (SMDs) support
various computation-intensive and delay-sensitive applications,
e.g., online games, and figure compression. However, SMDs
have limited computing resources and battery energy and
cannot execute all tasks of the above applications in a real-
time manner. Cloud computing provides enormous computing
resources and energy that can easily execute tasks offloaded
from SMDs. However, could data centers (CDCs) are often
located in remote sites, which leads to long transmission time.
Small base stations (SBSs) offer high-bandwidth and low-latency
services for SMDs, which solves the problem of cloud computing.
However, it becomes a challenge to achieve the lowest cost in
such a heterogeneous architecture including multiple SMDs,
SBSs, and the CDC while meeting delay requirements of tasks.
This work proposes a cost-minimized computation offloading
strategy to minimize the total cost of the system. A constrained
optimization problem is first formulated based on the hybrid
architecture. Afterward, a two-stage optimization algorithm
called a Lévy flights and Simulated Annealing-based Grey wolf
optimizer (LSAG) is developed to optimize the total cost of the
system. In the first stage, the optimal edge selection policy is
determined given multiple available SBSs. In the second stage,
task offloading and resource allocation among SMDs, SBSs,
and the cloud are determined. Experiments with real-life tasks
prove that LSAG significantly achieves lower cost with faster
convergence speed than state-of-the-art peers.

Index Terms—Mobile edge computing, computation offload-
ing, cloud computing, Lévy flights, intelligent optimization
algorithms

[. INTRODUCTION

Over the past few years, there has been a significant
increase in the usage of smart mobile devices (SMDs) and
wireless communications technologies. Therefore, various
applications including mobile games, online meetings in
SMDs greatly facilitate and enrich people’s daily lives [1].
However, some applications require enormous computing
resources and the energy of SMDs. Due to the limited com-
puting resources and battery energy of SMDs, local execution
of these applications becomes strained [2]. Moreover, a large
amount of energy consumption depletes the battery perfor-
mance and reduces the lifetime of SMDs. On the other hand,
cloud computing provides enormous computing resources
to solve this problem. However, cloud servers are often
deployed in remote areas at great distances [3]. Therefore,
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stringent delay requirements of various applications in SMDs
cannot be met by the centralized cloud computing paradigm
due to the inevitable long distances between SMDs and
servers in the cloud.

Edge computing provides a solution to avoid large trans-
mission latency in cloud computing. Small base stations
(SBSs) are more flexible to be deployed in crowded areas [4].
In this way, SBSs provide SMDs with close-proximity, high-
bandwidth, and low-latency services [5]. However, computing
resources in the edge are usually not as sufficient as that in
the cloud. As a result, SBSs and remote could data centers
(CDCs) are usually connected with fiber links with low
latency [6]. Thus, a cloud-assisted mobile edge computing
(MEC) architecture is constructed to process mobile appli-
cations that require plenty of computing resources and have
strict latency requirements.

Howeyver, there are still three issues that demand attention.
The first one is the latency in communication. Specifically,
the extra process of task offloading from SMDs to SBSs, and
from SBSs to the cloud unavoidably causes additional com-
munication latency [7]. The second one is resource allocation.
With a large number of SMDs offloading tasks to different
SBSs that may further offload tasks to the cloud, it becomes
an issue of how to efficiently allocate resources in each SMD
and SBS [8]. Finally, the total cost of the cloud-assisted MEC
system comprises of costs involving SMDs, SBSs, and the
cloud. Therefore, it has been recognized critical to realize
cost minimization for the system in such a complex and
heterogeneous environment.

Motivated by the above analysis, this work proposes a
cost-minimized computation offloading technique. As the
first step, we propose a fundamental unit architecture com-
prising of multiple SMDs, SBSs, and the cloud. Then, a
constrained optimization problem is formulated based on this
architecture. Moreover, we propose a two-stage optimization
algorithm called Lévy flights and Simulated Annealing-based
Grey wolf optimizer (LSAG). It incorporates Lévy flights
strategy and a metropolis acceptance criterion of Simulated
Annealing (SA) into Grey Wolf Optimizer. LSAG simulta-
neously optimizes edge selection, energy consumption, and
resource allocation in this cloud-assisted MEC system. Ex-
periments with real-life tasks from Google data centers reveal
that LSAG realizes cost-efficient computation offloading in a
cloud-assisted MEC architecture.
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Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 22,2025 at 03:49:17 UTC from IEEE Xplore. Restrictions apply.



II. PROBLEM FORMULATION

To study the cost minimization problem of the cloud-
assisted MEC system, we propose a unit architecture as
illustrated in Fig. 1. In this system, each SMD is connected
to one SBS. This work considers computation-intensive tasks
that are independent from each other. For example, virus scan
applications can be split into multiple logically independent
tasks and each task can be executed in SMDs or SBSs/cloud
by using partial computation offloading.

In this proposed architecture, if SMD i (1<i<N) is
connected to SBS j (1<j<J), ps;=1; otherwise, u;;=0.
Moreover, each task can be executed on SMDs, SBSs and/or
the cloud. PF, P} and P* denote the proportions of task k
executed in SMD ¢, SBS j and the cloud. As a result, the
sum of Pik, Pf and P* is one, i.e.,

PF+Pf+PF=1 (1)

‘Which SBS is it connected to? (SBS 1 or SBS 2)

Fig. 1. Architecture of the cloud-assisted MEC system.

A. Modeling of SMDs

TF denotes the average time for executing task k& in SMD
¢ and it can be obtained as:

L IEPral

7 fzk

where I denotes the size of input data of task k received
by SMD 4, o means the number of CPU cycles required by
each bit of input data of task k executed in SMD i, and fF
means the CPU running speed for executing task k& in SMD
i.

For each SMD i, the CPU speed for executing all tasks in
SMD ¢ cannot exceed its maximum CPU speed (F3), i.e.,

2

PF denotes the power consumption of executing task & in
SMD . Then, Pi’c is obtained as:

PF=S;(fF)3 4)

where S; is a constant determined by the chip architecture
of SMD i.

Moreover, E} is the energy consumption of executing all
K tasks in SMD 14, which is obtained as:

K
E}=Y_SiIfPFaf(f})? (5)
k=1

For each SMD ¢, it needs to transmit data to the SBS for
computing. P} denotes the transmitting power from SMD
i to the SBS. Moreover, it cannot exceed its maximum
transmitting power (Pit), ie.,

0< P <P (6)

Therefor, the energy consumption of data transmission
from SMD i to its corresponding SBS is E?Z, which is
obtained as:

E?=P!T! (7

where T denotes the time of transmitting tasks from SMD
1 to its corresponding SBS.

The total energy consumed by each SMD ¢ (£;) consists of
two parts. The first part is the energy consumed during local
execution (E}) and the second part is the energy required for
transmitting data to the SBS (E?), i.e.,

E; = E} + E} ®)

B. Modeling of SBS and the cloud

d;; denotes the distance from SMD ¢ to SBS j. According
to [9], the path loss between SMD 7 and SBS j is obtained
as (d;;)~" where v is the path loss parameter. A;; denotes
the bandwidth in SBS 5’s uplink and downlink channels used
for SMD 4. Moreover, the total bandwidth of SBS ;5 allocated
for all SMDs is one, i.e.,

N
Z pijAig=1 ©)
i=1

BY and BJ’ denote the bandwidth of uplink and downlink
channels for SBS j. Rin and Rg denote uplink and downlink
rates between SMD ¢ and SBS j. Based on Shannon’s
theorem [10], they are obtained as:

1+Pit(dij)_v\f1|2)

RZ:)\”BJUIOQQ( o (10)
P! (di) | fa?
RP=A,, B loga(1+ ;(dig) ™" f ) an
wo

where P} means the transmitting power of SBS j to each
SMD, f; and fy denote fading coefficients of uplink and

K
Z Fh<F, 3) downlink channels, and wy denotes the power parameter of
= ’ white Guassian noise.
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Moreover, fi’;- denotes the running speed for executing task
k from SMD i in SBS j and the running speed of all tasks
in SBS j cannot exceed its maximum limit (F}), i.e.,

N K

SN piith < Fy

i=1 k=1

12)

The number of CPU cycles required by tasks executed in
SBS j need to be less or equal to its limit CZ, i.e.,

ZZ (ni IF PFak)<CY

i=1 k=1

13)

Moreover, the number of memories required by tasks
executed in SBS j cannot exceed its limit M g ie.,

(i I} PEXE) <M

] =
Mx

(14)

1k

I
-

2
where x* denotes the amount of memory for executing task
k in SMD 1.

Similarly, the number of CPU cycles and memories re-
quired by tasks executed in the cloud cannot exceed its limit,
ie.,

N K

YOS ukPraF)<Cope (15)
=1 k=1

N K
SN uFPR ) <Nepe (16)

b
Il
_

i=1

where C'c pc and MC pc denote maximum CPU cycles and
memory in the cloud, respectively.

C. Latency model

The cloud-assisted MEC system consists of multiple time
consumption parts including computation and data transmis-
sion among SMDs, SBSs, and the cloud.

TJ; denotes the total time of executing task k& of SMD ¢
in SBS j and the cloud. It is obtained as:

~p ek
Ti=Ti+Ts (17)

where fk is the total time of data uploading, downloading,
and executing for task k£ of SMD ¢ in SBS j and T denotes
the total time of data uploading, downloading between SBS
7 and the cloud. Moreover, it also contains the time of
processing task k£ of SMD 4 in the cloud. TZ; is obtained
as:

~,€701(Pf+Pk)If PFIFPF  Oy(Py+PF)If

i U k D
RY E RD

(18)

where O; and O- are the overhead of transmitting data in

where r; denotes the transmission rate between SBSs and the
cloud. O3 and O4 denote the overhead of transmitting data
from each SBS to the cloud, and that from the cloud to each
SBS, respectively. Moreover, fo denotes the computational
speed of the cloud.

The total time (7;) by executing all K tasks in the
system is the maximum value of local computation and edge
computation, which is obtained as:

J

K
T= max(T},> i Tf)

k=1 j=1

(20)

Moreover, the total computational time cannot exceed the
upper limit required by the user (73), i.e.,

T, <T; 21)

D. Total cost model

E;; denotes the energy consumption of executing SMD 4’s
offloaded tasks in SBS j and it is obtained as:

K
Eij= Sl Praf(f5)? (22)
k=1
where S; is a constant determined by SBS j’s chip architec-
ture.
Moreover, E;y is the energy consumption of executing

SMD 7’s offloaded tasks in the cloud and it is obtained as:
K —
PSOsPFIF PSO,P Ik
Eio= ( § 8 g0

T r
=1 t t

—|—I"Pkakeo) (23)

where P§ and PZ denote data transmission power from SBS
to the cloud, and that from the cloud to SBS, respectively.
ep means the energy consumption of each CPU cycle in the
cloud.

Moreover, the total energy consumption in SBS and the
cloud cannot exceed their corresponding limit, i.e.,

Z i By < E (24)
where Ej means the maximum energy of SBS j.
N
Y En<E (25)
i=1

where E, means the maximum energy in the cloud.

Finally, F denotes the total cost of the cloud-assisted MEC
system, which consists of three parts, i.e., the cost of the local
SMDs (F 1), the cost of all SBSs (F g) and the cost of the
cloud (F ¢). Then,

each uplink and downlink channel from each SMD to each F=FL+Fs+Fc (26)
SBS and from each SBS to each SMD, respectively. N
Moreover, tasks in SMDs are offloaded to an SBS kand r LZTMZ E; (27)
it can be further offloaded to the cloud. Therefore, T';; is i—1
obtained as: N
Tf:j:Ostflk _1_1:”“]!6(%;c +O4Pk]ik (19) F s=rg Z Z E;; (28)
¢ fo T4 i=1 j=1
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N
Fc=rc Z Eio

i=1

(29)

where ry, rg, and ro are prices ($/KWH) of energy in
SMDs, SBSs, and the cloud, respectively.

ITII. LEVY FLIGHTS AND SIMULATED ANNEALING-BASED
GREY WOLF OPTIMIZER (LSAG)

Given the constrained optimization problem (f), our
proposed LSAG is given as follows. [ is nonlinear
with respect to decision variables including 5, PF, PF,
Pk, fF, Pl Xij, ff. To handle the above constraints, a
penalty function method [11] is adopted to transform all
constraints into the penalty and convert this problem into an
unconstrained optimization one. Moreover, LSAG comprises
of two stages. The first stage is used to determine the edge
selection (1;;) and the second one is used to determine other
decision variables.

Low-requirement and low-capacity-first (LLF) principles
are proposed in the first stage of LSAG to decide the
association between each SBS and each SMD. For example,
LLF decides which SBS is used to serve SMD 6 in Fig. 1.
In the proposed LLF, users with lower resource requirements
are allocated to SBSs with fewer resources. In this way,
SBSs with more resources have a higher probability of idling.
Therefore, users with more resource requirements have more
possibility to be directly served by a SBS with more resources
instead of the cloud. As a result, LLF can reduce the number
of tasks allocated to the cloud for reducing latency and
cost. However, the computing resource requirement of an
SMD is represented as a two-dimensional vector including
CPU and memory. As different resource types have varying
scales, computing resource requirements of SMDs are first
normalized. Thus, the Euclidean norm for each resource type
is used to represent resource requirements of an SMD.

The second stage of LSAG uses chaotic mapping to initial-
ize the population. M denotes the number of population and
D denotes the dimension of each individual. The population
(X) is initialized as:

Z;=4 X Z;_1 X (]. — Zifl),ll € [2,3, ,M]

o . (30)
Xi:bd+(bd — bd) X Z;i 1 € [1,2, ,M}

where Z denotes a M X D zero matrix. Bd and Bd represent
lower and upper bounds of each dimension d.

The value of attenuation factor a controls the balance of
exploration and exploitation during the optimization process.
However, a fixed proportion of exploration and exploitation
is difficult to adapt. Therefore, we propose an adaptive
attenuation factor that is controlled by ~. ¢; denotes the
current iteration number and ¢; denotes the maximum number
of iterations. Therefore, when 2—1<7, a is updated with (31);
otherwise, it is updated with (3§).

t
a=—0.1x 2405

To improve the exploration ability of LSAG for complex
problems, a strategy of Lévy flights is used for enhancing
global exploration ability. Lévy flights refer to the random
walk with the probability distribution of step length and
heavy tail distribution [12]. In this way, gray wolfs have a
higher possibility to jump out of local optima. In LSGA, the
distance between other wolfs and the third best wolf § is Dy,
which is decided by that between other wolfs and the two
best wolfs (D, and Dpg).

TO+O)sin() ¢

ou= = (33)
1 1
ree x 2%

op=1 (34)

where ( is a stable parameter of Lévy flights, u ~ N (0, 7,2),
and v ~ N(0,0,2). Ds is updated as:

1 u d d
= X4~ o) + (X,
2 o< e

Ds= I ES)
where a¢ and 8% denotes the dimension d of the first two
best wolfs « and §. Finally, new population X’ is updated

as:

1
X’f‘:§ [a— Ay X Do+B% A x Dg] +Ds  (36)

where A1 and A, denote coefficient vectors.

Moreover, LSAG adopts SA’s Metropolis acceptance
rule when selecting individuals for the next iteration. The
Metropolis acceptance rule allows directions worsening ob-
jective function values, which is able to jump out of local
optima and successfully find global one by setting the cooling
rate of temperature [13]. The possibility of acceptance is
given as:

p=e T (37)
where v is the difference of fitness values before and after
the update. 7' is the initial temperature in SA and p is the
possibility of acceptance.

The details of LSAG are shown in algorithm 1. In addition,
we discuss the time complexity of LSAG. The computation
overhead is mainly brought by the for loop, which terminates
when the number of iterations reaches ¢1. Thus, the time
complexity in each iteration is O(DN). As a result, the
overall time complexity of LSAG is O(f; DN).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Experiments are carried out by using data from Google
data centers for one day. Parameter setting is shown in Tables
I and II. Parameters of LSAG are set as follows. v = 0.5,
¢ = 1.5, and T = 1000. We compare LSAG with three
benchmark algorithms including genetic algorithm (GA) [14],
genetic learning particle swarm optimization (GLPSO) [15],
and grey wolf optimizer (GWO) [16].

(31) Figs. 3 and 4 illustrate the cost and the penalty of LSAG,

1 GA, GWO, and GLPSO in each iteration, respectively when

t there are 10 SMDs in the system. It is shown that LSAG

a=2—(-0.1 x E"‘O'E’) (32)  has the lowest cost (0.048 $) after 1000 iterations. Moreover,
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it is shown in Fig. 4 that the penalty of GLPSO and GA
cannot be zero at the end. The penalties of LSAG and GWO
both decrease to zero at the end of their search processes.
This demonstrates that the solutions finally obtained by
these algorithms are valid. However, GWO yields a satisfied
solution after 200 iterations, which is longer than LSAG.
LSAG has a lower penalty at the beginning of iterations and
it achieves the penalty of zero after 100 iterations.

Fig. 5 shows the total cost of the system by different
distances between SBSs and SMDs. It is shown that the
cost of all algorithms increases with the distance because
a larger distance between SBSs and SMDs requires more
energy consumption in data transmission. Among all the

algorithms, LSAG achieves the lowest cost with all different
distances. Fig. 6 illustrates the total cost of the system of four
algorithms with respect to different numbers of SMDs. It is
shown that the cost of LSAG is the smallest when IV varies
from O to 40. In addition, Fig. 7 shows the cost with different
values of TZ and different numbers of SMDs of LSAG. It is
shown that LSAG can yield satisfied solutions under different
latency limits.

Furthermore, Figs. 8 and 9 illustrate the cost of SMDs
and the total one with respect to different numbers of SMDs.
For comparison, we also give the cost of random offloading,
local computing, and full offloading. It is shown that LSAG
outperforms random and local computing in terms of the
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Algorithm 1 LSAG
Input: i1, Bd and i)d, v, M, D, T
Output: Final population X
: Initialize X with (30)
: for each SMD i do
if SMD 4 can be only served by SBS S; then

1
2
3
4: MHij = 1
5
6
7

end if
: end for
: Sort all unallocated SMDs in an ascending order based on the
number of required computing resources
: Allocate SMD ¢ to SBS S; with the least available capacity
(nij = 1)
9: Calculate the fitness value of all individuals and choose the best
one as «, and the suboptimal individual as 8
10: for t;=1:f; do
11:  for i=1:M do

oo

12: if <y then

13: Calculate a with 31

14: else

15: Calculate a with (32)

16: end if

17:  end for

18:  for :=1:M do

19: for d=1:D do

20: Update A; and Az with 2 X a X ri1—a
21: Update C; and C> with 2 X r2—a
22: Da = ‘Cl X ad — de‘

23: Dﬁ = |CQ X ﬁd - Xid|

24: Calculate o, with (33)

25: Calculate Dgs with (35)

26: Update X/ with (36)

27: Calculate the acceptance probability with (37)
28: end for

29: if £(X,")<f(X;) then

30: Xz = Xi,

31: else

32: if p>r; then

33: X=X/

34: else

35: X: = X;

36: end if

37: end if

38:  end for

39: end for

40: return X

cost of SMDs in Fig. 8. Its cost is higher than that of full
offloading, which leads to larger transmission latency. Fig. 9
shows that the proposed offloading strategy achieves almost
the lowest cost among all the strategies. The penalty of these
strategies for 10 SMDs is shown in Fig. 10 and the penalty
of each strategy with different numbers of SMDs is shown
in Fig. 11. It is shown that all strategies except LSAG do not
achieve zero penalties after the iterations.

V. CONCLUSIONS

Nowadays, smart mobile devices (SMDs) play a dominant
role in people’s lives. However, their limited battery energy
and computation resources make it difficult to execute all
tasks within the limited time required by users. This work
designs the architecture of a cloud-assisted mobile edge com-
puting system for partial computation offloading. Moreover,

a constrained cost minimization problem is formulated and
solved by a two-stage optimization algorithm called Lévy
flights and Simulated Annealing-based Grey wolf optimizer
(LSAG). The first stage of LSAG provides the optimal edge
selection policy and the second stage jointly optimizes the
offloading and resource allocation among SMDs, SBSs, and
the cloud for minimizing the total cost of the system. Real
data-based experiments prove that LSAG achieves the least
cost in fewer iterations than its typical peers. Our next work
will extend LSAG by applying it to a more complex environ-
ment where locations of SMDs and SBSs move dynamically.

REFERENCES

[1] R. Cong, Z. Zhao, G. Min, C. Feng and Y. Jiang, “EdgeGO: A Mobile
Resource-Sharing Framework for 6G Edge Computing in Massive IoT
Systems,” IEEE Internet of Things Journal, vol. 9, no. 16, pp. 14521-
14529, Aug. 2022.

[2] H. Yuan and M. Zhou, “Profit-Maximized Collaborative Computation
Offloading and Resource Allocation in Distributed Cloud and Edge
Computing Systems,” IEEE Transactions on Automation Science and
Engineering, vol. 18, no. 3, pp. 1277-1287, Jul. 2021.

[3] J. Bi, H. Yuan, K. Zhang and M. Zhou, “Energy-Minimized Partial

Computation Offloading for Delay-Sensitive Applications in Hetero-

geneous Edge Networks,” IEEE Transactions on Emerging Topics in

Computing, vol. 10, no. 4, pp. 1941-1954, Oct. 2022.

C. Chen, J. Zhang, X. Chu and J. Zhang, “On the Optimal Base-Station

Height in mmWave Small-Cell Networks Considering Cylindrical

Blockage Effects,” IEEE Transactions on Vehicular Technology, vol.

70, no. 9, pp. 9588-9592, Sept. 2021.

[5] H. Yuan, Q. Hu, J. Bi, J. Lii, J. Zhang and M. Zhou, “Profit-optimized
Computation Offloading with Autoencoder-assisted Evolution in Large-
scale Mobile Edge Computing,” IEEE Internet of Things Journal, Feb.
2023.

[6] J.Bi, K. Zhang, H. Yuan and J. Zhang, “Energy-Efficient Computation
Offloading for Static and Dynamic Applications in Hybrid Mobile Edge
Cloud System,” IEEE Transactions on Sustainable Computing, Oct.
2022.

[7]1 S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou and X. Shen, “Delay-
Aware Microservice Coordination in Mobile Edge Computing: A
Reinforcement Learning Approach,” IEEE Transactions on Mobile
Computing, vol. 20, no. 3, pp. 939-951, Mar. 2021.

[8] A. Belgacem, K. Beghdad-Bey and H. Nacer, “Dynamic Resource

Allocation Method Based on Symbiotic Organism Search Algorithm

in Cloud Computing,” IEEE Transactions on Cloud Computing, vol.

10, no. 3, pp. 1714-1725, Jul. 2022.

Y. Wang, M. Sheng, X. Wang, L. Wang and J. Li, “Mobile-Edge

Computing: Partial Computation Offloading Using Dynamic Voltage

Scaling,” IEEE Transactions on Communications, vol. 64, no. 10, pp.

4268-4282, Oct. 2016.

M. A. van Wyk, L. Ping and G. Chen, “Multivaluedness in Networks:

Shannon’s Noisy-Channel Coding Theorem,” IEEE Transactions on

Circuits and Systems, vol. 68, no. 10, pp. 3234-3235, Oct. 2021.

[11] J. Bi, Z. Wang, H. Yuan, J. Zhang, M. Zhou, “Self-adaptive Teaching-

learning-based Optimizer with Improved RBF and Sparse Autoencoder

for High-dimensional Problems,” Information Sciences, vol. 630, pp.

463-481, Jun. 2023.

F. Jiang, L. Dong, K. Wang, K. Yang and C. Pan, “Distributed Resource

Scheduling for Large-Scale MEC Systems: A Multiagent Ensemble

Deep Reinforcement Learning With Imitation Acceleration,” IEEE

Internet of Things Journal, vol. 9, no. 9, pp. 6597-6610, May 2022.

[13] X. Zhou, S. Li and Y. Feng, “Quantum Circuit Transformation Based

on Simulated Annealing and Heuristic Search,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 39,

no. 12, pp. 4683-4694, Dec. 2020.

M. Xu, G. Feng, Y. Ren and X. Zhang, “On Cloud Storage Optimiza-

tion of Blockchain With a Clustering-Based Genetic Algorithm,” IEEE

Internet of Things Journal, vol. 7, no. 9, pp. 8547-8558, Sept. 2020.

Y. Gong, J. Li, Y. Zhou, Y. Li, H. Chung, Y. Shi and J. Zhang,

“Genetic Learning Particle Swarm Optimization,” IEEE Transactions

on Cybernetics, vol. 46, no. 10, pp. 2277-2290, Oct. 2016.

S. Mirjalili, S. M. Mirjalili, A. Lewis, “Grey Wolf Optimizer,” Ad-

vances in Engineering Software, vol. 69, no. 10, pp. 46-61, Mar. 2014.

[4

[lnar)

[9

—

[10]

[12]

[14]

[15]

[16]

5057

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 22,2025 at 03:49:17 UTC from IEEE Xplore. Restrictions apply.



