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Abstract—Swarm intelligence and evolutionary algorithms
are widely applied in industrial scheduling, mobile edge com-
puting, etc due to their strong robustness and fast optimiza-
tion speed. However, some real-world industrial optimization
problems involve numerous decision variables, known as high-
dimensional problems. Current algorithms often require con-
siderable computational resources to evaluate objective function
values because of high-dimensional decision spaces. Moreover,
they are also prone to be trapped in local optima. To solve
the above problems, this work proposes an improved algorithm
named Surrogate-assisted Multi-class Collaborative Teaching
and learning optimizer (SMCT). A multi-class collaborative
teaching and learning optimizer is proposed as a base optimizer
to improve exploration and exploitation abilities. Furthermore,
an autoencoder-assisted radial basis function is proposed as the
surrogate model to replace true function evaluations, thereby
saving computational resources and balancing the complexity
and accuracy in fitting true models. Finally, experimental results
demonstrate that SMCT surpasses its existing peers in both
search accuracy and convergence speed across eight high-
dimensional benchmark functions.

Index Terms—Meta-heuristic optimization algorithms, au-
toencoders, surrogate models, high-dimensional problems, and
radial basis functions.

I. INTRODUCTION

Swarm intelligence and evolutionary algorithms are widely
applied in many fields, e.g., system scheduling optimization
[1]–[3], cybernetics [4], and mobile edge computing [5]–[7].
Traditional optimization methods, e.g., Newton’s methods
[8] and simplex algorithms need to traverse entire decision
spaces, which cannot entirely explore them in a short time
and they suffer from combinatorial explosion [9]. Motivated
by the social and natural phenomena of biological groups,
many optimization algorithms are designed to solve the above
complex optimization problems, e.g., grey wolf optimization
(GWO) [10], teaching-learning-based optimization (TLBO)
[11] and genetic algorithm (GA) [12]. They are simple to
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implement and highly generalized, making them applicable
to a wide range of optimization problems. However, many
complex combinatorial industry problems have a great num-
ber of decision variables [13]. Given the complexity, non-
linearity, constraints and many other characteristics of high-
dimensional problems, traditional optimization algorithms
cannot well cover their whole decision spaces. Moreover,
function evaluations become increasingly expensive [14], and
the optimization algorithms need a huge number of function
evaluations, consuming a large number of computational
resources during their optimization processes [15]. Thus, it
is essential to propose an optimizer that can find the global
optima efficiently with fewer computational resources.

As function evaluations in high-dimensional problems be-
come expensive, the introduction of surrogate models allevi-
ates this problem [16]. By learning the landscape features
of a model, surrogate models can substitute a part of it
in function evaluations [17], thereby saving computational
resources. However, the training of surrogate models under
high-dimensional data also brings additional computational
costs. As a result, it becomes essential to balance the accuracy
and complexity of the surrogate models. An excessively
complex surrogate model consumes too many resources, but
an inaccurate one may mislead the optimization direction,
leading to inaccurate or even false optimization results [18].
Therefore, additional strategies need to be considered to
ensure the validity of the final optimization results.

To solve the above problems, an improved Surrogate-
assisted Multi-class Collaborative Teaching and learning op-
timizer (SMCT) is proposed. A Multi-class Collaborative
Teaching and learning optimizer (MCT) is first designed as
the base optimizer to improve exploration and exploitation
abilities. Specifically, the population is split into multiple
classes in the teaching phase, and each class has its cor-
responding teacher. Learners converge to their teacher in
different classes. In that case, multiple classes can better
cover the decision space and prevent the algorithm from
developing premature convergence problems. In the learning
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phase, the GWO’s search strategy is incorporated and multi-
ple classes are recombined into a single population again.
The top three best learners are selected and the popula-
tion approaches them with the hunting strategy of GWO.
Moreover, MCT adopts GA’s mutation strategy and simulated
annealing (SA)’s Metropolis acceptance criteria. The former
allows fluctuations of learners’ performance and the latter
allows acceptance of worsened individuals, both of which
facilitate MCT to step out of local optima. Furthermore,
an Autoencoder-assisted Radial Basis Function (ARBF)
is designed as the surrogate model, which incorporates an
autoencoder to enable the radial basis function (RBF) to
be trained in a low-dimensional space. Therefore, RBF can
be trained with fewer computational resources and shorter
training time. Furthermore, SMCT employs a reevaluation
strategy to ensure the accuracy of optimization results. To
be specific, some of the individuals are reevaluated by the
true model. Finally, we compare SMCT with its three typical
peers by using eight high-dimensional benchmark functions,
and the simulation results show the superiority of the SMCT.

II. PROPOSED FRAMEWORK

A. Multi-class Collaborative Teaching and learning opti-
mizer (MCT)

In MCT, individuals in the population are learners. More-
over, the teacher has the best fitness value, and the remaining
individuals are learners that approach the teacher in the
teaching phase. The fitness value of each learner represents its
learning performance. However, the teacher has a significant
impact on the optimization direction of the whole population.
Once the teacher falls into a local optima, learners are
similarly susceptible to encountering it as they move closer
to the teacher. As a result, in the teaching phase of MCT,
learners are split into multiple classes, each of which owns a
teacher and multiple learners moving closer to their teacher.
N denotes the number of random individuals (X1, X2, · · · ,
XN ) in a decision space. N individuals are given as:

X1

X2

...
XN

=


X1

1 , X2
1 , · · ·, XD

1

X1
2 , X2

2 , · · ·, XD
2

...
...

. . .
...

X1
N , X2

N , · · ·, XD
N

 (1)

where D is the dimension of the population, and
Xd

i ∈[b̌d, b̂d, ], 1≤d≤D and 1≤i≤N . b̌d and b̂d denote lower
and upper bounds of dimension d. Moreover, Xi represents
individual i and Xd

i denotes its dimension d. Individuals are
updated based on the average position of the population (Md)
in the teaching phase, i.e.,

Xd
i (t+1)=Xd

i (t)+rd
(
Xd

T (t)−TfMd(t)
)

Md=
1

N

N∑
i=1

Xd
i

Tf=round[1+rand(0, 1)]

(2)

where Xd
i (t) denotes the value of dimension d of individual

i in iteration t. Moreover, Xd
T (t) represents the value of

dimension d of the teacher in iteration t, and rd is a random
value in [0,1]. Moreover, Tf represents a learning factor that
controls the rate of progress of learners.

Each class incorporates a part of the population. In the
learning phase, all classes are re-combined into a single
population. Inspired by GWO, the top three learners (Xα,
Xβ , and Xδ) in the population are selected and the rest of
the individuals (Xω) move towards them, Dα, Dβ or Dδ

denote the distances between the current individual Xi and
Xα, Xβ , or Xδ , respectively. They are obtained as:

Dα=|C1 ·Xα−Xi|, Dβ=|C2 ·Xβ−Xi|, Dδ=|C3 ·Xδ−Xi|
(3)

where C1, C2, and C3 are coefficient vectors and they are
obtained as:

C1=2 · r1, C2=2 · r2, C3=2 · r3 (4)

where r1, r2, and r3 are three random values in [0,1].
Therefore, the position of Xi needs to be adjusted towards

directions of Xα, Xβ , and Xδ . Then, three new vectors, X1,
X2, X3 are obtained as:

X1=Xα−A1 ·Dα, X2=Xβ−A2 ·Dβ , X3=Xδ−A3 ·Dδ (5)

where A1, A2, and A3 are coefficient vectors obtained as:

A1=2a · r4−a,A2=2a · r5−a,A3=2a · r6−a (6)

where r4, r5, and r6 are three random values in [0,1], a is a
coefficient and linearly decreases from 2 to 0.

Finally, a new position (Xi(t+1)) of individual i in itera-
tion t+1 is updated as:

Xi(t+1)=
X1+X2+X3

3
(7)

Moreover, the mutation operation of GA is adopted in
MCT. It allows learners to fluctuate in their learning per-
formance, i.e., they may become over-performing and under-
performing. Reasonable control of the fluctuation probability
(pm) allows each individual to jump out of local optima. If
individual i is fluctuated, its dimension d (Xd

i ) is updated as:

Xd
i =b̌d+(b̂d−b̌d) (8)

Finally, MCT adopts the Metropolis acceptance rule to
select proper individuals for the subsequent optimization
process. It allows the selection of individuals whose fitness
becomes worse after the update in the next generation [19],
which enhances the diversity of the population in new iter-
ations. Therefore, individuals can better cover the decision
space, thus improving the exploration ability of MCT. The
acceptance probability in our work is calculated as:

p=e−
∆
T (9)

where p denotes the acceptance probability and T denotes
the starting temperature of SA. ∆ denotes the difference in
fitness values for each iteration.
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B. Autoencoder-assisted Radial Basis Function (ARBF)

Surrogate models aim to substitute the true model to
perform function evaluations of individuals. They are applied
to reduce the number of expensive fitness evaluations to
alleviate the computing overhead of the algorithm. An RBF
model can fit functions with a high degree of nonlinearity,
and they have great robustness and high convergence speed,
which are widely applied as the surrogate model. However, it
still suffers from long training time and may become overly
complex when facing extensive high-dimensional training
data. This not only makes the surrogate model unuseful but
also results in the overfitting problem. Therefore, this work
considers training the RBF model in a lower-dimensional
space. To avoid the problem of dimensional mismatch, the
data input for the final prediction also needs to be low-
dimensional. Autoencoders are widely adopted as dimension
reduction methods, which can model relatively complex
nonlinear relationships.

Based on the analysis above, MCT is first adopted to ex-
plore the decision space, and positions of the population after
each iteration are collected for the training of autoencoder.
A trained autoencoder is then used to encode the data for
the RBF training. In addition, a linear activation function is
adopted for training the RBF model, i.e.,

γ(X)=εTψ=

m∑
i=1

εiψ(X−ci)

ψij=ψ(∥Xi−Xj∥)=∥Xi−Xj∥, i, j=1, · · ·, u
ε=ψ−1Y

(10)

where γ(X) denotes the RBF model, ψ(·) denotes the radial
basis function, ci denotes the basis function center i, and m
represents the basis function centers’ number. Moreover, K-
means algorithm [20] is adopted to select the basis function
centers. X denotes the input data points, and u denotes their
number. ∥·∥ represents the Euclidian norm. Finally, ε denotes
the weight coefficients obtained by X and its set (Y ) of
corresponding function values.

C. Surrogate-assisted Multi-class Collaborative Teaching
and learning optimizer (SMCT)

At the beginning of SMCT, MCT is employed to search in
the decision space. Moreover, the positions of each individual
in the population are recorded in the database ϕ. It is used to
train the autoencoder later. Once the predetermined iteration
number is reached, the autoencoder is trained by ϕ. It learns
features of the decision space and can be adopted to turn
a high-dimensional decision space into a lower-dimensional
one. After the autoencoder training, the information of each
individual is stored in another database σ for later RBF
training. MCT keeps searching until the predetermined itera-
tion number for the RBF training is reached. Afterward, the
trained autoencoder is adopted to encode σ into the lower-
dimensional data. Then, the K-means algorithm selects basis
centers from it, and then the RBF model is constructed. It is
worth noting that RBF is trained with low-dimensional data,
which significantly reduces its complexity and training time.

Algorithm 1 SMCT
Input: t̂, maximum number (t̂1) of iterations in MCT for autoen-
coder training, maximum number (t̂2) of iterations in MCT for
ARBF training, database (ϕ) to train the autoencoder, database (σ)
to train the ARBF, pm, T and reevaluation number (R)
Output: Final population (P )

1: Initialize population P , ϕ=∅, and σ=∅
2: while t≤t̂ do
3: if t<t2 then
4: P ′ =MCT(P )
5: f(P ′)=FE(P ′)
6: if t<t1 then
7: ϕ=ϕ∪P ′

8: end if
9: σ=σ∪P ′

10: Adopt Metropolis acceptance criterion to update P ′ as P
11: t=t+1
12: if t=t1 then
13: A= autoencoder(ϕ)
14: t=t+1
15: end if
16: else if t=t2 then
17: σ̂ = encode(A, σ)
18: γ=ARBF(σ̂)
19: P ′ = MCT(P )
20: P̂ ′ = encode(A,P ′)
21: f(P ′)= ARBFpredict(γ, P̂ ′)
22: Take the top C learners for reevaluation
23: Adopt Metropolis acceptance criterion to update P ′ as P
24: t=t+1
25: else
26: P ′ = MCT(P )
27: P̂ ′ = encode(A,P ′)
28: f(P ′)= ARBFpredict(γ, P̂ ′)
29: Take the top R learners for reevaluation
30: Adopt Metropolis acceptance criterion to update P ′ as P
31: t=t+1
32: end if
33: end while
34: Return P

Moreover, during the subsequent optimization process, MCT
generates offspring in the decision space. Positions of the
population are then encoded by the autoencoder and input to
the ARBF, which in turn outputs the predicted fitness values.

Finally, fitness values are predicted by ARBF at the
later stage of the optimization process, which may lead to
inaccuracy in the final optimization results. As a result,
a reevaluation strategy is proposed to solve this problem.
Specifically, After each iteration, the top R individuals with
better-predicted fitness values are reevaluated by the true
model because they have a higher probability of performing
better in the true model. Therefore, reevaluating the first
few individuals can ensure the accuracy of the search results
while saving computational resources. The searching process
of SMCT is illustrated in Fig. 1, and the pseudo codes are
shown in Algorithm 1. Autoencoder(·) and RBF(·) represent
the autoencoder and RBF training. encode(·) represents the
encoding phase of the autoencoder. ARBFpredict denotes
the prediction process of the ARBF. MCT(·) denotes the
process of generating offspring by MCT and FE(·) represents
the function evaluation of the population. Moreover, the
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Fig. 1. Flowchart of SMCT

time complexity of SMCT comprises three parts including
autoencoder, RBF, and MCT. The complexity of autoencoder
training is O(qD), where q is the sample size for training
the autoencoder. The complexity of RBF is O(uD) and that
of generating offspring with MCT is O(t̂DN), where t̂ is
the maximum iteration number of SMCT. Therefore, the
complexity of SMCT is O(qD+uD+t̂DN).

TABLE I
BENCHMARK FUNCTIONS

Functions D

F1(x)=
N∑

i=1
xi

2 100

F2(x)=
N∑

i=1
|xi|+

N∏
i=1

|xi| 100

F3(x)=
N∑

i=1

 i∑
j=1

xj

2

100

F4(x)=
N∑

i=1
[100(xi+1−x2

i )
2
+(xi−1)2] 100

F5(x)=
N∑

i=1
[x2

i−10cos(2πxi)+10] 100

F6(x)=−20exp

−0.2

√√√√ 1
N

N∑
i=1

x2
i

−exp

(
1
N

N∑
i=1

cos(2πxi)

)
+20+e 100

F7(x)= 1
4000

N∑
i=1

x2
i−

∏N
i=1 cos

(
xi√
i

)
+1 100

F8(x)= π
30

{
10sin2(πy1)+

N∑
i=1

(yi−1)2[1 + 10sin2(πyi+1)]+(yn−1)2

}
100

+
N∑

i=1
u(xi, 10, 100, 4)

III. COMPARATIVE EXPERIMENTS

A. Experimental Settings

Experiments are carried out by comparing SMCT with
three typical algorithms including genetic learning parti-
cle swarm optimization (GLPSO) [21], TLBO, and Self-
adaptive Teaching-learning-based Optimizer with Improved
RBF and Sparse Autoencoder (STORA) [22] on eight high-
dimensional unimodal and multimodal benchmark functions.
The formulas for them are shown in Table I. Moreover, 20
independent executions are carried out for each algorithm for
robustness. Moreover, mean values and standard deviations of
the final optimization values of each algorithm are recorded.
Parameter settings of GLPSO, TLBO, and STORA are given
in [11], [21] and [22], respectively. For SMCT, its parameters

are set as follows: t̂=1000, t̂1=200, t̂2=800, pm=0.03,
T=108, Tf=2 and R=5.

TABLE II
EXPERIMENTAL RESULTS

Functions Algorithms Mean Std

F1 SMCT 0.00×10+00 0.00×10+00

GLPSO 1.35×10+04 2.72×10+03

TLBO 1.35×10−163 0.00×10+00

STORA 3.93×10−267 0.00×10+00

F2 SMCT 0.00×10+00 0.00×10+00

GLPSO 0.97×10+01 0.79×10+00

TLBO 5.17×10−85 3.03×10−85

STORA 2.67×10−130 3.37×10−131

F3 SMCT 6.41×10−285 0.00×10+00

GLPSO 4.90×10+04 5.05×10+03

TLBO 4.13×10+01 5.08×10+01

STORA 9.88×10−151 2.20×10−150

F4 SMCT 9.81×10+01 0.07×10+00

GLPSO 2.47×10+03 4.25×10+02

TLBO 9.93×10+01 0.49×10+00

STORA 9.88×10+01 0.01×10+00

F5 SMCT 0.00×10+00 0.00×10+00

GLPSO 1.25×10+02 0.98×10+01

TLBO 0.00×10+00 0.00×10+00

STORA 0.00×10+00 0.00×10+00

F6 SMCT 4.44×10−16 3.21×10−15

GLPSO 0.43×10+01 0.18×10+00

TLBO 7.99×10−15 0.00×10+00

STORA 4.44×10−15 3.46×10−13

F7 SMCT 0.00×10+00 0.00×10+00

GLPSO 0.27×10+01 0.26×10+00

TLBO 0.00×10+00 0.00×10+00

STORA 0.00×10+00 0.00×10+00

F8 SMCT 1.25×10−02 0.00×10+00

GLPSO 2.13×10−02 1.25×10−01

TLBO 2.26×10−02 0.01×10+00

STORA 1.31×10+00 0.62×10+00

B. Experimental Results

Fig. 2 shows that SMCT has a faster convergence speed
than its peers, and it finds the global optimum at iteration
400. GLPSO has a poor performance on F1 because it
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cannot search the decision space efficiently and falls into
local optima. Although TLBO and STORA are not trapped
in local optima and both keep moving closer to the global
optimum in the decision space, their search speeds are lower
than that of SMCT. Figs. 3, 6 and 8 show that F2, F5 and
F7 have the similar trend to F1, SMCT finds the global
optimum of benchmark functions and has faster searching
speed than its peers. This is because MCT has better search
capabilities and search efficiency. It is shown in Fig. 4 that
TLBO and GLPSO both trap into a local optima. This is

because the landscape features of F3 are complex. STORA
adopts dimensional reduction tools that help it jump out
of the local optima and continue to explore the decision
space. However, SMCT still has a faster optimization speed
and almost finds the global optimum based on Table II. It
is illustrated in Fig. 5 that SMCT converges a little later
compared with its peers, but it has better optimization results
(9.81×10+01). Fig. 7 shows that SMCT converges within 100
iterations on F6. Its convergence speed and final optimization
results are both superior to those of its peers. Fig. 9 illustrates
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that the iteration curve of SMCT on F8 shows a similar trend
to F6. It is worth noting that the iteration curve shows some
fluctuations at the beginning of the search process. This is
because SMCT allows fluctuations in learners’ performance
in the learning phase and adopts SA’s Metropolis acceptance
criterion. Both of them helps SMCT to jump out of local
optima. Finally, it is shown in Table II that SMCT achieves
the best fitness values and has small standard deviations on
all benchmark functions after all its iterations, which proves
its powerful exploration ability and robustness.

IV. CONCLUSIONS

Nowadays, swarm intelligence (SI) algorithms are widely
applied in industrial areas, which can optimize industrial
processes and bring higher productivity. However, some
industrial optimization problems have high-dimensional de-
cision spaces and traditional SI algorithms cannot well solve
them. Thus, it is difficult for current algorithms to explore
the decision space well, and they may easily fall into local
optima. This work proposes an improved Surrogate-assisted
Multi-class Collaborative Teaching and learning optimizer
(SMCT) for high-dimensional industrial optimization prob-
lems. First, to allow its search strategy to better cover the
decision space and avoid it from falling into local optima, a
multi-class collaborative teaching and learning optimizer is
proposed as the base optimizer to enhance search capability
in high-dimensional spaces. Then, an autoencoder-assisted
radial basis function (ARBF) is designed as a surrogate model
to substitute the true model for function evaluations, thereby
saving computational resources. Moreover, ARBF adopts
an autoencoder to balance its complexity and prediction
accuracy. Eight high-dimensional benchmark functions are
used to compare our proposed SMCT with three typical
algorithms and results show that SMCT has higher search
efficiency and better optimization results.

In the future, first, we intend to further apply SMCT
to practical high-dimensional optimization problems, e.g.,
mobile edge computing, and factory scheduling, to test its
generalization ability. Second, we will try to employ multi-
ple surrogate models with deep learning simultaneously to
collaboratively simulate different regions of the real model,
thereby further improving the algorithm.
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