
11392 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Long-Term Water Quality Prediction With
Transformer-Based Spatial-Temporal Graph Fusion
Jing Bi , Senior Member, IEEE, Ziqi Wang , Student Member, IEEE, Haitao Yuan , Senior Member, IEEE,

Xiangxi Wu, Renren Wu, Jia Zhang , Senior Member, IEEE, and MengChu Zhou , Fellow, IEEE

Abstract— Over the past decades of rapid development, the
global water pollution problem became prominent. Accurate
water quality prediction can detect the trend and anomaly of
water quality changes in advance, thereby taking timely measures
to avoid water quality problems. Traditional statistical methods
for water quality prediction tend to fail to capture the com-
plex relationship among multiple water quality variables. Deep
learning models face a challenge to capture both temporal depen-
dence and spatial correlation of the water quality series data.
To solve the above problems, this work proposes an adaptive and
dynamic graph fusion water quality prediction model based on
a spatiotemporal attention mechanism named Spatial-Temporal
Graph Fusion Transformer (STGFT). It integrates a spatial
attention encoder, a temporal attention encoder, an adaptive
dynamic adjacency matrix generator, and a multi-graph fusion
layer. Among them, the first two are adopted to capture the
spatial correlations and temporal characteristics among different
water quality monitoring stations, respectively. The generator
can produce adaptive and dynamic adjacency matrices to reflect
potential spatial relationships in a river network. Experimental
results with real-life water quality datasets reveal that the
prediction accuracy of STGFT outperforms the existing state-
of-the-art models.

Note to Practitioners—This paper is motivated by the problem
of long-term water quality prediction. The highly volatile water
quality data and the nonlinear characteristics of the time series
greatly affect the accuracy of the forecasting task. Existing
approaches fail to simultaneously capture spatial correlations and
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temporal characteristics among different water quality monitor-
ing stations, affecting the accuracy of water quality predictions.
This work proposes a water quality prediction method that
captures the spatial correlations and temporal characteristics
among different water quality monitoring stations. Moreover,
it produces adaptive and dynamic adjacency matrices to reflect
potential spatial relationships in a river network. Experimental
results from three real-world datasets show that this approach is
feasible and obtains more accurate prediction results. Further-
more, this method can also be applied to other areas of time series
prediction, including finance, traffic, and smart manufacturing.

Index Terms— Spatiotemporal prediction, water environment,
graph neural networks, attention mechanism.

I. INTRODUCTION

NOWADAYS, the deterioration of water environment has
become one of the most important issues constraining the

sustainable development of our society. To solve this problem,
water quality prediction methods [1] are proposed to forecast
elemental values of the water environment in the future based
on past monitoring data. Hence, people can take timely steps
to address water pollution by accurately predicting future
water quality. There are two common methods of predicting
water quality, i.e., mechanism models and deep learning ones.
The former needs to select proper model parameters and
requires prior knowledge and professional experience. They
are often based on specific assumptions, e.g., water quality
trends are linear, and time series are stationary. However, these
assumptions may not be true in an actual situation, thus biasing
the prediction results.

Deep learning models, e.g., back propagation neural
networks, recurrent neural networks, and convolutional neu-
ral networks [2] are suitable for water quality prediction
through the limited water quality information. However, with
socio-economic ties among regions strengthening, the water
environment shows complex changes. Multiple water qual-
ity monitoring stations interact, and their data are affected
by historical values and values from upstream monitoring
stations, increasing the difficulty of making accurate water
quality predictions. Graph Neural Networks (GNNs) have
shown powerful capabilities in dealing with complex spatial
sequence data, and they can thus be adopted to solve the
above problem. Specifically, they can handle non-Euclidean
data and represent water quality data in spatial dimensions.
Therefore, they can model the spatial relationship among
water quality monitoring stations at different locations [3].
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However, due to the high complexity of river networks and
the uncertainty of spatial relationships, inaccurate information
in defining their graph structure may result in an inaccurate
graph. Therefore, a predefined graph structure can only capture
the local spatial information, and it is difficult to capture the
spatial dependencies adequately.

Based on the aforementioned analysis, this work proposes
a water quality prediction model named Spatial-Temporal
Graph Fusion Transformer (STGFT). It integrates spatial atten-
tion encoder (SAE) and temporal attention encoder (TAE)
to capture the spatial correlations and temporal charac-
teristics among different water quality monitoring stations,
respectively. An adaptive dynamic adjacency matrix generator
(ADMG) is designed to utilize spatial and temporal char-
acteristics to generate adaptive and dynamic graphs, better
reflecting potential spatial relationships in a river network.
Specifically, ADMG utilizes spatial features output from SAE,
a randomly initialized adjacency matrix, and a predefined
graph to generate these two graphs. The adaptive graph is
completely deprived of prior knowledge of the river network,
and the main spatial features are extracted based on learning.
The dynamic graph further incorporates prior knowledge of
the predefined graph to provide potential spatial relationships
as an auxiliary. It captures spatial relationships over time,
reflecting dynamic dependency structures in river networks.
The usage of ADMG prevents STGFT from being restricted
by a predefined graph structure of the fixed river network
information. Experimental results on three practical datasets
show that STGFT has high accuracy in long-term water quality
predictions. Furthermore, the effectiveness of each module in
STGFT is verified by our ablation studies, which proves that
the proposed ADMG can help to excavate the potential spatial
dependence and play a significant role in raising the model’s
prediction performance. The main contributions of this work
are summarized as:

1) TAE is proposed to learn temporal features of the time
series data in each water quality monitoring station.
It captures the correlation of water quality elements
among different time steps. Moreover, ADMG based
on SAE is designed to capture the spatial correlations
among water quality monitoring stations. Despite the
high complexity and uncertainty of spatial relationships
in river networks, ADMG generates dynamic and adap-
tive graphs to mine the potential spatial dependencies in
river networks.

2) TAE, SAE, and ADMG are integrated into STGFT
for long-term water quality prediction. It can utilize
water quality data to capture the spatial correlations
and temporal characteristics for accurate water quality
prediction.

3) STGFT is compared with four typical peers under three
real-world water quality datasets. Experimental results
show that STGFT is superior to its peers in the long-term
water quality prediction.

The remainder of this work is structured as follows.
Section II discusses the related work of different water quality
prediction methods. Section III describes each component

of the proposed STGFT and gives its overall architecture.
Section IV introduces the experimental datasets and conducts
the comparative experiments. Section VI concludes this work.

II. RELATED WORK

Water quality plays a vital role in aquatic ecosystems
because it can affect the growth of aquatic organisms and
reflect the extent of water pollution [4]. Accurate water
quality predictions are essential for environmental monitoring,
sustainable ecosystem development, and human health. The
main purpose of water quality prediction is to predict water
bodies’ key water quality elements in the future, e.g., dissolved
oxygen, total phosphorus, and total nitrogen. It is worth noting
that water quality prediction belongs to the field of time series
forecasting. The methods of water quality prediction can also
be applied to other fields like traffic flow forecasting. Scholars
have studied statistical, machine learning, and deep learning
methods for time series forecasting in recent years.

A. Statistical Methods on Time Series Forecasting

Multiple Linear Regression (MLR) and Auto-Regressive
Integrated Moving Average (ARIMA) are two common sta-
tistical methods used in time series forecasting. MLR uses
past data on independent and dependent variables to model
linear relationships, while ARIMA uses past data on dependent
variables to model time series. Francis et al. [5] describe the
mathematical relationships between several physicochemical
parameters in water quality to determine these parameters with
minimal equipment. Specifically, the authors analyze seven
physicochemical parameters weekly for two drinking water
sources (tap and well water) stored in containers for six weeks.
MLR is utilized to investigate the statistical relationships
between these factors. However, the model cannot simulate
the situation as time changes, and the model cannot be easily
adjusted according to different situations. Wang et al. [6] intro-
duce a Holt-Winters seasonal model that builds on the ARIMA
time series framework. The authors develop a comprehen-
sive water quality forecast model incorporating eutrophication
indicators, including total phosphorus and nitrogen as key
parameters. However, it is a static model and cannot be applied
to predict other water quality indicators, thus limiting its
scalability.

In practical applications, changes in water quality data often
present complex nonlinear and nonsmooth characteristics.
Traditional linear statistical models have limited ability to
fit this kind of data, and they are difficult to capture the
complex relationships between multiple variables. Moreover,
the mechanism water quality prediction models are modeled
through a physical approach, and they cannot be adjusted
promptly in facing sudden water quality problems such as
heavy rainfall, resulting in its incapability of accurately pre-
dicting subsequent changes in water quality. In addition, the
mechanism model cannot make real-time predictions, which
limits its applicability.

B. Machine Learning Methods on Time Series Forecasting

To solve the problems of statistical methods on water quality
prediction, some researchers have applied machine learning

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on April 26,2025 at 10:26:01 UTC from IEEE Xplore.  Restrictions apply. 



11394 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

methods, e.g., Principal Component Analysis (PCA), Support
Vector Regression (SVR), and decision trees. Batur et al. [7]
investigate evaluating surface water quality indicators through
applying PCA for data integration and extraction techniques.
It focuses on several key quality metrics of water quality.
By merging satellite images’ spectral and spatial resolution
capabilities, this study leverages data mining methodologies
to generate enhanced images with refined spatial detail and
temporal frequency. The prediction of surface water quality
metrics employs a PCA-driven response surface regression
approach. Nevertheless, it is important to note that the
dataset underpinning this analysis is exclusively derived from
summertime observations. Consequently, the observational
timeframe needs to be extended to ensure the development of a
more comprehensive model that encapsulates variability across
different seasons. Su et al. [8] integrate an enhanced version
of the sparrow search algorithm called improved sparrow
search algorithm (ISSA), with the SVR model to predict future
water quality. Specifically, ISSA is deployed to select the
SVR’s penalty factor and kernel function parameters, thereby
improving the model’s predictive precision and generalization
ability. However, the assessment of water quality is influenced
by various intricate factors. In this research, only five variables
impacting water quality classification are chosen from the
collected data without considering the potential interrelation-
ships among these influencing factors. Lu amd Ma [9] propose
hybrid models that integrate decision trees within the machine
learning framework to enhance the precision of time series
prediction. The core algorithms of these hybrid models include
extreme gradient boosting and random forest, each enhanced
with an advanced data-denoising approach. Their work ana-
lyzes water samples collected from the Tualatin River Basin.
The proposed model aims to predict key water quality metrics,
e.g., water temperature, and dissolved oxygen. Nonetheless,
this method should incorporate additional variables influencing
water quality, achieving long-term water quality prediction.
Furthermore, the computational complexity of this approach
is relatively high, posing challenges for real-time prediction.
Zhan et al. [10] integrate meteorological and hydrological
data, and perform correlation analysis between meteorological
and hydrological data features. Then, the correlation matrix
between these features is derived. Finally, an SVR model
using the radial basis function as a kernel function is used
for prediction. Since the method combines meteorological and
hydrological data, it can better adapt to contingency situations.
However, it does not consider the spatial characteristics of
water quality data, which leads to difficulties in dealing with
complex river network structures.

However, there are challenges when using machine learning
methods to predict water quality. The results obtained from
them may contain errors due to statistical inferences. Most
machine learning methods generate results based on previously
fixed patterns. Thus, any new experience or data may not
have accurate predictions. Moreover, the initial investment of
time in training machine learning algorithms is huge, and
the demand for data is enormous. Therefore, the training and
maintenance of these models have high complexity [11]. Even
minor logical inaccuracies can give rise to significant defects in

the machine learning workflow, leading to erroneous outputs.
Furthermore, traditional machine learning models usually use
shallow models with limited ability to model complex patterns
and relationships. They are also prone to overfitting problems
when the number of features is large, compromising their
performance and generalizability.

C. Deep Learning Methods on Time Series Forecasting

Deep learning introduces deep neural networks that can
learn more abstract features and deal with complex prob-
lems. In addition, they have better generalization ability than
machine learning methods. Therefore, deep learning is widely
applied in the time series prediction. Jiang et al. [12] present
a dynamic temporal dependency model, which modifies the
transformer architecture. With its encoder-decoder framework,
the model allows for flexible adjustments to historical data and
forecast ranges, making it easier to learn multi-step temporal
dependencies and minimize error accumulation. Xu et al.
[13] introduce a long short-term memory (LSTM) variant
incorporating a spatial autocorrelation and the nonlocal atten-
tion module for predicting vegetation indices. This approach
utilizes the nonlocal attention mechanism to capture long-
range dependencies, while the spatial autocorrelation modeling
leverages the local Moran index to understand spatial relation-
ships. However, the above studies only focus on temporal or
spatial features and do not integrate them, making the model
more effective in short-term prediction but not applicable to
long-term time series prediction. To avoid this drawback, spa-
tiotemporal prediction methods are widely applied. Qiao et al.
[14] design a novel spatiotemporal prediction model named
fusion spatiotemporal GCN network. This model employs a
temporal attention mechanism to address the nonlinear nature
of water quality time series. In addition, the model utilizes
graph convolution to capture spatial dependencies within river
networks. The integration of spatiotemporal fusion facili-
tates the capture of comprehensive spatiotemporal features.
Furthermore, a temporal convolution residual mechanism is
incorporated, enhancing the accuracy of long-term series pre-
diction. However, this method is not well fused with spatial
and temporal features. It cannot adaptively select the most
relevant input features and appropriately capture long-term
temporal dependence of the water quality data.

In addition, several studies have introduced spatial encoders
and GCNs to better reflect the spatial correlations. Chen et al.
[15] focus on predicting spatial-temporal air pollutants by
developing an adaptive adjacency matrix-based graph convo-
lutional recurrent network. This model integrates points of
interest and meteorological data into a fully connected neural
network to determine the weights of the adjacency matrix. The
pollutant data and the adjacency matrix are then fed into the
GCN unit, which is integrated with LSTM units to capture
spatiotemporal dependencies. However, when extracting the
spatial relationship, the model does not incorporate a graph
completely detached from prior knowledge, and some potential
spatial features may be lost. Shen and Yoon [16] apply
spatiotemporal fusion prediction to traffic flow prediction. The
authors note that traditional graph structures are trained in
the training phase and do not reflect the data used in the
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testing phase. This shortcoming is particularly prominent in
traffic prediction due to the frequent unexpected changes in
traffic data and irregularities in the time series. Therefore. The
authors propose a novel traffic prediction framework named
progressive GCN. It constructs a set of graphs using the online
input data during the training and testing. However, this work
does not consider the predefined road network structure, and
the summation of the representations extracted from different
subgraphs to obtain the final graph structure loses some vital
information in the final graph structure. Yang et al. [17] focus
on spatiotemporal gas turbine energy consumption prediction.
The authors adopt a graph structure with a fusion strategy
to solve the irregularity problem of multi-source sensor data
and then propose a diffusion graph network with an adaptive
neighbor matrix. The adaptive neighbor matrix module cap-
tures the temporal trend of spatial information based on the
input data. The diffusion graph cycle module can memorize
historical sequences. However, this work is entirely detached
from the prior experience in constructing the adaptive graph,
which leads to the poor robustness of the model.

Unlike the above studies, this work proposes a spatiotem-
poral water quality prediction model based on graph attention
networks to predict the trends of key water quality indica-
tors in aquatic environments. The performance of the graph
attention network is highly dependent on the quality of the
employed graph structure. To better reflect the actual spatial
characteristics of the river network, the proposed ADMG
generates three graphs for mutual fusion. The first one is
a predefined graph generated by manually measuring the
distance of each monitoring station. It can reflect the actual
geospatial characteristics of the monitoring stations. However,
due to the complexity of the spatial structure of river net-
works, the relationship between upstream and downstream
may even change due to the influence of rainfall and other
meteorological factors. Thus, the randomly initialized matrix
introduces and trains the adaptive graph. It is entirely detached
from the prior knowledge of the predefined map. The potential
spatial characteristics and the change pattern are explored. The
dynamic graph combines the prior knowledge to extract the
spatial features more comprehensively. It captures spatial rela-
tionships over time, reflecting dynamic dependency structures
in river networks. These three graphs and temporal features
cooperate to predict water quality accurately.

III. PROPOSED METHODOLOGY

For water quality prediction, it is shown in Fig. 1 that due to
the complex upstream and downstream spatial influence of the
river network, the future water quality of a region is affected
by its historical water quality and the historical water quality
of other monitoring stations. Therefore, combining spatial and
temporal features is necessary to predict future water quality
accurately. This section introduces the overall framework of
the proposed STGFT. It then introduces the structure of TAE
that captures the temporal features of each water quality moni-
toring station. It next introduces the structure of ADMG based
on SAE that learns the correlation among water quality moni-
toring stations and generates adaptive and dynamic adjacency
matrices to mine the potential spatial dependencies in river

Fig. 1. Water quality prediction.

TABLE I
MAIN NOTATIONS

networks. It finally discusses the combination of the above
modules to construct STGFT. Its notations are summarized in
Table I.

A. Temporal Attention Encoder (TAE)

In water quality prediction tasks, historical data can affect
the future trend of change, and the monitoring values at differ-
ent time steps also have different impacts on the future water
quality change. For example, when the rainfall is excessive
during the flood season, some pollutants enter the river with
the rainwater, leading to a significant deterioration of water
quality, and it affects the subsequent changes. In this case,
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Fig. 2. Structure of the TAE.

to capture the correlation of water quality elements between
different time steps, this work designs TAE that learns the
temporal features of each water quality monitoring station.
TAE’s structure is shown in Fig. 2. It includes multiple tem-
poral attention layers, and they are stacked together. Each layer
mainly includes position embedding, linear transformation,
calculation of attention weights, normalization, and a feed-
forward network. It is assumed that there are N water quality
monitoring stations and C water quality elements. Before
entering the first temporal attention layer, a feature embed-
ding vector X ′

∈RN×T ×D is generated based on the historical
temporal feature data X={X :,1, X :,2, X :,t , . . . , X :,T }∈RN×T ×C

of water quality monitoring stations, where R denotes a set
of real numbers, T denotes the number of time steps, and
D denotes the embedding dimension. Then, the positional
embedding (P) [18] is obtained as P(p,2m)= sin(p/100002m/D)

and P(p,2m+1)= cos(p/100002m/D), where p denotes the posi-
tion number and m denotes the current dimension number.
Moreover, P(p,2m) and P(p,2m+1) occur alternately, and they
are obtained by the sin function (sin(·)) and the cos function
(cos(·)), respectively.

Then, the input feature embedding is added to the positional
embedding, obtaining the input of the temporal attention layer
(X̂ T =(X ′

+P)∈RN×T ×D). In the temporal attention layer,
a self-attention mechanism [19] is adopted to extract the
internal correlation of the historical sequence data for N
sites in parallel. It calculates the similarities between different
timestamps, capturing the dynamic temporal dependencies
among neighboring timestamps. It allows the model to be
more flexible with inputs from different time steps and better
adapt to the requirements of other tasks. First, X̂ T is mapped
to three different feature spaces, obtaining a query vector
QT ∈RN×T ×D , a key vector KT ∈RN×T ×D , and a value vector
VT ∈RN×T ×D . QT denotes the current focus of attention,
indicating the value to be predicted for the time step. KT

denotes the information about the historical timesteps, which
is used to match with QT . VT denotes a vector containing the
actual information corresponding to KT . Then, the scaled dot
product is used to calculate the attention intensity of each time
step for other time steps on QT , KT , and VT . Softmax(·) is
adopted for normalization, obtaining the attention coefficient.
Finally, the attention coefficient is multiplied by VT , resulting
in the output of the self-attention mechanism (A(·)). The

specific calculation process is as follows:

QT = X̂ T W Q
T (1)

KT = X̂ T W K
T (2)

VT = X̂ T W V
T (3)

A(QT , KT , VT ) = Softmax
(

QT K T
T

√
dk

)
VT (4)

where W Q
T , W K

T , and W V
T represent trainable parameter matri-

ces, dk represents a scaling factor, and it is the size of the
first dimension of KT . Moreover, to capture the complex fea-
tures of water quality, a multi-head attention mechanism [20]
is adopted in the temporal attention layer, i.e., training I
groups of self-attention mechanisms while later concatenating
the results and then remapping them back to the original
dimensions. hT (i) represents the output of the self-attention
mechanism of group i . The specific calculation process is as
follows:

hT (i) = A
(

W Q
T (i)X̂ T , W K

T (i)X̂ T , W V
T (i)X̂ T

)
(5)

H
(
X̂ T

)
= ∥

I
i=1(hT (i))W O

T (6)

where W Q
T (i), W K

T (i), and W V
T (i) represents trainable param-

eter matrices in the group i of self-attention mechanisms, and
W O

T is a trainable parameter matrix. Based on the idea of
residual connection [21], the output of the multi-head attention
mechanism (H(X̂ T )) is added to X̂ . Then, it passes layer
normalization [22] and a feed-forward neural network. Finally,
the output result of TAE (OT ) is obtained after normalization,
i.e.,

Z =

{
X̂ , i=0
O(i−1)

T , otherwise
(7)

r(i) = NL(H(Z)+Z) (8)

O(i)
T = NL

(
W (i)

T1
ReLU

(
W (i)

T0
r(i)

)
+r(i)

)
(9)

where r(i) denotes the residual result of group i . NL(·)

represents layer normalization. WT0 and WT1 represent train-
able parameter matrices in the feed-forward neural network.
ReLU(·) means the activation function ReLU.

B. Adaptive Dynamic Adjacency Matrix Generator Based on
Spatial Attention Encoder

1) Spatial Attention Encoder: Water quality monitoring
sensors are widely distributed in rivers and lakes, and the
water quality conditions of the downstream are often affected
by the upstream water quality. An SAE is proposed to cap-
ture the correlation between each water quality monitoring
station to effectively mine the potential spatial features of
the water quality data. The structure of the SAE is shown
in Fig. 3. It includes multiple spatial attention layers, and
they are stacked together. Each layer mainly includes posi-
tion embedding, GCN, linear transformation, calculation of
attention weights, and a feed-forward network. Specifically,
the predefined adjacency matrix A and X ′ are used as the input
of the GCN [23] layer, resulting in a node embedding vector
X̂ S . Fig. 4 shows an example of the construction process of A
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Fig. 3. Structure of the SAE.

with five monitoring stations. It constructs a graph structure by
weighing the distances between each monitoring station after
measuring them manually. A shows the geospatial structure of
river networks. Specifically, each node denotes a monitoring
station, and the value denotes the impact of the two monitoring
stations. It is normalized to [0,1], where the larger value
indicates that the relationship between these two stations is
greater. Next, similar to the temporal attention layer, parameter
matrices W Q

S , W K
S , and W V

S are adopted to map the X̂ S to
three different feature spaces, resulting in query vector, key
vector, and value vector. For SAE, QS denotes the current
focus of attention, indicating the spatial features that need to be
predicted for the time step. KS denotes the spatial information
of the historical time step, which is the corresponding spatial
feature obtained from the input data. VS denotes a vector of
values containing the actual spatial information corresponding
to KS . Then, the scaled dot product is used to calculate
the attention coefficient. After that, it performs a weighted
summation on the value vector, resulting in the output result of
the self-attention mechanism. Finally, the results pass through
a feed-forward neural network [24], obtaining the spatial
attention AS , i.e.,

X̂ S = φ
(
X ′, A

)
(10)

hS(i) = A
(

W Q
S (i)X̂ S, W K

S (i)X̂ S, W V
S (i)X̂ S

)
(11)

H
(
X̂ S

)
= ∥

I
i=1(hS(i))W O

S (12)

AS = WS1 ReLU
(
WS0

(
H

(
X̂ S

)))
(13)

where φ denotes a GCN, hS(i) represents the output of
the self-attention mechanism of group i . W Q

S (i), W K
S (i) and

W V
S (i) represent its trainable parameter matrices. W O

S , WS1

and WS0 represent parameter matrices. The above result is used
as an input feature of the GCN layer, thus extracting spatial
features. This process is shown as OS=φ(AS, A). Specifically,
this work defines the output of the last stacked spatial attention
layer as OS .

2) Adaptive Dynamic Adjacency Matrix Generator: Due to
the high complexity and uncertainty of spatial relationships in
river networks, the predefined graph structure cannot reflect
the real spatial relationships. Therefore, ADMG is designed
to generate adaptive and dynamic adjacency matrices to mine
the potential spatial dependencies in river networks. As shown

Fig. 4. Construction of the predefined graph.

Fig. 5. Structure of the ADMG.

in Fig. 5, ADMG first uses a randomly initialized vector
E∈RN×D to construct adaptive adjacency matrix AP∈RN×N ,
the deficiency of A in representing node relationships is
compensated by constructing it. Moreover, AP is fixed after
training. Furthermore, the OS is input into two parallel GCNs
to construct a dynamic adjacency matrix. They take AP and
A as parameters, obtaining the dynamic feature mapping
Fd∈RN×T ×D . This process is shown as follows, where α and
β are trainable parameters. They are used to weigh the output
results of the two GCNs.

AP = Softmax(ReLU(E · ET)) (14)
Fd = αφ(OS, AP)+βφ(OS, A) (15)

Then, Fd is converted into a two-dimensional matrix
(F ′

d∈R(D×T )×N ), and a linear transformation [25] is performed
on F ′

d to obtain a dynamic feature of a specific dimension
(F̃d∈RN× f ), where f denotes the number of linear layers.
Then, a dynamic embedded Ed∈RN× f is generated by F̃d and
E . We have:

F̃d = W f F ′

d (16)

Ed = ReLU(Tanh(F̃d ⊙ E)) (17)

where W f ∈R f ×(D×T ) represents trainable parameters in the
linear layer, Tanh(·) denotes the hyperbolic tangent function,
and ⊙ represents the Hadamard product. Finally, Ed is mul-
tiplied by its transpose matrix ET

d to generate a dynamic
adjacency matrix AD∈RN×N , i.e.,

AD=ReLU(Tanh(Ed · ET
d )) (18)
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Fig. 6. Overall framework of STGFT.

C. Spatial-Temporal Graph Fusion Transformer (STGFT)

Sections III-A and III-B have described the three main
components of STGFT, i.e., TAE, SAE, and ADMG. This
section introduces the overall architecture of STGFT. Fig. 6
shows its architecture. The original water quality sequence
data X is the input in parallel to TAE and SAE, obtaining
the temporal features OT that contain the correlations among
different time steps and the spatial features OS that contains
the spatial correlation among different nodes. Then, OS is used
as the input of ADMG and obtains the adaptive adjacency
matrix AP and the dynamic adjacency matrix AD . Moreover,
the multi-graph fusion layer adopts three parallel GCNs to
fuse AP , AD , and A and generate node embeddings Fl . Then,
we have Fl=µ(φ(A, OT ))+ν(φ(AP , OT ))+ω(φ(AD, OT )),
where µ, ν, and ω are parameters adopted to weight the
output results of three GCNs and they are obtained through
the training.

After that, Fl is decoded using feed forward networks in
the fully connected layer, predicting the future water quality
sequence data Y . The specific process is shown as follows:

Y ′
= FWt (Fl)=W 1

t ReLU
(
W 0

t Fl
)

(19)

Y = FWd
(
Y ′

)
= ReLU

(
Y ′W 0

d

)
W 1

d (20)

where FWt and FWd represent two feed forward networks,
FWt is used to transform the time dimension, converting Fl

into a vector Y ′ of the target prediction length, FWd is used
to transform the water quality feature dimension, converting
Y ′ into a vector Y of the target feature dimension. W 0

t , W 1
t ,

W 0
d , and W 1

d represent training parameter matrices.

TABLE II
OVERVIEW OF WATER QUALITY PREDICTION DATASETS

IV. EXPERIMENTS AND RESULTS ANALYSIS

A. Dataset Selection and Parameter Tuning

1) Dataset Description: Three real-world water quality
datasets are selected to verify the effectiveness of the STGFT,
i.e., Alabama, Beijing, and Beijing-Tianjin-Hebei (BTH)
datasets. Table II shows the overview of water quality pre-
diction datasets. Specifically, Alabama datasets comprise the
historical dissolved oxygen data from May 2017 to Aug.
2019 at the Cahaba River station with 1-hour sampling inter-
vals. The Beijing dataset includes the total nitrogen data of
six water quality monitoring stations in Beijing from Oct.
2018 to Aug. 2022. The BTH dataset contains more complex
spatial relationships than the Alabama and Beijing datasets.
It includes 24 water quality monitoring stations in different
administrative divisions of the Beijing-Tianjin-Hebei region
in China. Moreover, it contains 48 edges and 9,275 sampling
points, covering the total nitrogen historical time series data
sampled every 4 hours from Oct. 2018 to Dec. 2022. In addi-
tion, Table III shows an example of the detailed data structure
of the three datasets on one day. The satellite map of water
quality monitoring stations in the Beijing-Tianjin-Hebei region
is shown in Fig. 7. Moreover, Table IV lists their geographical
information, including the regions, longitude and latitude, and
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TABLE III
DATASET DESCRIPTION

TABLE IV
GEOGRAPHIC INFORMATION OF WATER QUALITY MONITORING STATIONS IN THE BTH DATASET

basins of each water quality monitoring station. It is worth
noting that this work adopts the same data preprocessing
method for each dataset, and each dataset is divided into
training, validation, and testing sets in the ratio of 70%, 10%,
and 20%. The input length of each sample is 40, and the output
length is 10, i.e., 40 historical time steps of data are used to
predict 10 future time steps of data.

2) Parameter Tuning: To optimize the prediction perfor-
mance of the STGFT, some hyperparameters need to be
manually adjusted. These hyperparameters include the num-
ber of heads of the multi-head attention mechanism (H ),
embedding dimension (E), and GCN output dimension of the
multi-graph fusion layer (G). Therefore, this section selects
the optimal combination of parameters for STGFT through
experiments.

The multi-head attention mechanism allows STGFT to
perform attention calculation in multiple subspaces in paral-
lel, allowing the model to concentrate on different subspace
information simultaneously, thereby enhancing the model’s

generalization and representation abilities. An appropriate H
can help improve the model’s overall predictive performance.
This work sets H ∈ {1, 2, 4}. Moreover, the embedding
dimension has an important impact on the model’s representa-
tion ability and computational efficiency. A small embedding
dimension may lose information and reduce the accuracy of
predictions, while a large one may cause the model to fall into
local minima. Therefore, adjusting the E during the training
process is necessary. This work lets E ∈ {8, 16, 32}. Finally,
G is selected from {8, 16, 32, 64}. Table V shows the Root
Mean Square Error (RMSE) [26], Mean Absolute Error (MAE)
[27], and Mean Absolute Percentage Error (MAPE) [28] for
the predicted values of STGFT compared to the true values.
It is shown that STGFT achieves the best prediction accuracy
when H , E , and G are set to 2, 16, and 16, respectively.

B. Comparative Experiments

This experiment is conducted on a server with an Intel
Xeon 6248R CPU and a GTX3090 GPU. The code for the
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Fig. 7. The satellite map of water quality monitoring stations in the
Beijing-Tianjin-Hebei region.

TABLE V
PREDICTED EFFECTS OF STGFT WITH DIFFERENT

SETS OF HYPERPARAMETERS

model is written in Pytorch framework. The batch size is set
to 64. Moreover, the dropout of the model is set to 0.3 to
prevent the overfitting problem. During the training process,
the model is trained by using the Adam optimizer with the
learning rate initialized to 0.01 and the weight decay to 1×104.
To verify the effectiveness of STGFT, four baseline models,
which are recent and represent the state-of-the-art are adopted
for comparative experiments, i.e., Attention-based Spatial-
Temporal Graph Convolutional Networks (ASTGCN) [29],
Graph WaveNet [30], Spatial-Temporal Synchronous Graph
Convolutional Networks (STSGCN) [31], and Graph Attention
WaveNet (GATWNet) [32]. Figs. 8 and 9 show the RMSE and
MAE of STGFT and comparative models on prediction steps
from 1 to 10.

Table VI shows the prediction error of STGFT and com-
parative models on Alabama, Beijing, and BTH datasets
on one prediction step. It is shown in Figs. 8 and 9 that
STGFT achieves the lowest RMSE and MAE on all pre-
diction steps, which proves the predictions obtained by the
STGFT are closer to the real values. Moreover, it is shown
in Table VI that STGFT achieves the lowest prediction error
on all datasets compared with the baseline models. Its RMSE
on three datasets is reduced by an average of 10.63–19.74%,
1.69–23.97%, and 14.28–30.01% compared to the baseline

Fig. 8. Comparison of multi-step (1-10) prediction RMSE on BTH dataset.

Fig. 9. Comparison of multi-step (1-10) prediction MAE on BTH dataset.

Fig. 10. Comparison of prediction results (Beiyang Bridge).

models, indicating that STGFT has higher accuracy and sta-
bility on water quality predictions. Furthermore, compared
with experimental results on Alabama and Beijing datasets
on a smaller spatial scale, STGFT has a greater improvement
in prediction accuracy on the BTH dataset. This shows that
STGFT can effectively capture time and potential spatial
features in spatiotemporal water quality data as spatial scale
increases. Fig. 10 shows the prediction effect of the STGFT
and comparative models by drawing the prediction curve of
one water quality monitoring station (Beiyang Bridge) in
the BTH dataset. It is shown that the prediction result of
the STGFT is closer to the true value, proving that STGFT
has advantages in water quality spatial-temporal prediction.
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TABLE VI
COMPARISON OF PREDICTIVE METRICS OF STGFT WITH OTHER BASELINE MODELS

Fig. 11. Comparison of multi-step (24-192) prediction RMSE on BTH
dataset.

Fig. 12. Comparison of multi-step (24-192) prediction MAE on BTH dataset.

Moreover, we also increase the step size to validate the
long-term prediction accuracy of STGFT. It is shown in
Figs. 11 and 12 that with the increase of prediction steps, the
prediction accuracy of all models decreases. This is because
the models need to understand the relationship between more
distant time points, leading to information loss and increased
uncertainty. However, STGFT achieves the lowest RMSE and
MAE on all prediction steps, proving the model’s superiority.

In addition, this work adopts the heat map to show the orig-
inal adjacency matrix, ADMG-generated adaptive adjacency

Fig. 13. Heat map of the adjacency matrices in the BTH dataset.

matrix, and ADMG-generated dynamic adjacency matrix com-
posed of 24 nodes in the BTH dataset to show the effectiveness
of ADMG. It is shown in Fig. 13 that the adaptive adjacency
matrix learns the main river network spatial relationships.
In contrast, the dynamic adjacency matrix generated based on
input features provides some potential spatial relationship as
an auxiliary. Therefore, the predefined, adaptive, and dynamic
adjacency matrixes complement each other in the spatial
relationship. Finally, they are fused at the multi-graph fusion
layer, providing a spatially dependent basis for aggregating
spatiotemporal relationships.

C. K-Fold Cross-Validation

K -fold cross-validation is employed to avoid model overfit-
ting and improve generalization ability. It divides the dataset
into K subsets of the same size and gradually uses different
subsets as the validation set. This can ensure that each data
point appears in the validation set and that the division of
training and validation sets is more balanced. The K is selected
as 10 in the experiment. Taking the BTH dataset as an
example, the dataset is randomly divided into 10 equal-sized
subsets. Nine pieces of data are used as the training set and
one as the validation set in each iteration, ensuring that each
subset can appear once as the validation set. In that case, the
model’s generalization performance is evaluated at different
prediction step sizes (1-10, 24, 48, 96, 192), which leads to
more robust and reliable experimental results and effectively
avoids the overfitting problem of the model. The result of
the K -fold cross-validation of the single-step prediction of the
BTH dataset is shown as an example in Table VII. The results
demonstrate that the model’s RMSE, MAE, and MAPE do not
change significantly and perform well at different validation
rounds, proving the model’s robustness.

D. Ablation Studies

The ablation experiment aims to analyze the effectiveness of
each module in the STGFT. The vertical coordinate represents
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TABLE VII
K -FOLD CROSS-VALIDATION FOR THE BTH DATASET

Fig. 14. Ablation on alabama dataset.

the RMSE, with smaller values indicating more accurate
predictions. It compares the prediction accuracy of the STGFT
after removing certain modules from it. Specifically, this
subsection verifies the effectiveness of ADMG, TAE, and SAE.

Figs. 14-16 show the prediction accuracy after remov-
ing a certain part of STGFT when the input length is
40, and the prediction length is 10. X means removing
X∈{T, S, R, A, AD, AP}, where T and S mean the benchmarks
without TAE and SAE, respectively. R and A mean the
benchmarks without removing the predefined adjacency matrix
and ADMG, respectively. AD and AP mean benchmarks
without removing dynamic and adaptive adjacency matrices
generated by ADMG, respectively. It is shown in Figs. 14-16
that removing any module in STGFT negatively impacts its
prediction accuracy. After removing ADMG or its generated
adaptive adjacency matrix and dynamic adjacency matrix,
STGFT’s prediction accuracy on the BTH dataset compared
with the other two datasets has a more obvious reduction.
Therefore, the ablation experiments verify the effectiveness of
each module in STGFT, proving that ADMG based on SAE
plays a vital role in mining potential spatial features of the
water environment. ADMG assists STGFT in capturing richer
spatial dependencies.

V. DISCUSSION

The computational complexity of each model is dis-
cussed. Table VIII shows the computational complexity among
STGFT and other baseline models. It illustrates the number
of parameters and FLOPs of each model. FLOPs measure
how many floating-point operations are performed during the
model training and inference. It determines the complexity of
the model and affects the speed of the model training and
inference. It is shown that STGFT has the least number of
parameters but relatively high FLOPs. This is mainly due to
the graph training. However, the adaptive and dynamic graphs
significantly contribute to the accuracy of prediction results.

Fig. 15. Ablation on beijing dataset.

Fig. 16. Ablation on BTH dataset.

TABLE VIII
COMPUTATIONAL COMPLEXITY AMONG STGFT

AND OTHER BASELINE MODELS

Furthermore, STGFT combines spatiotemporal features for
predicting water environment data, essentially a time serial
prediction technique. Thus, it can be applied to other time
series prediction tasks, especially ones with simultaneous
spatial features. First, it can be used in traffic prediction [16],
where traffic congestion varies periodically. In addition, spatial
characteristics of the road network also exist because the traffic
condition of a road is affected by its surrounding roads. Thus,
our method is suitable for traffic prediction. Second, it can also
be used for photovoltaic output prediction in grid-connected
power plants [37]. This problem aims to predict the future
photovoltaic sequence using historical photovoltaic sequence
data, which is essentially a time series prediction problem.
The problem also has spatial characteristics, i.e., photovoltaic
power generation from neighboring sites affects the power
generation at that site, so spatial attention can automatically
capture matching photovoltaic power generation sequences
from neighboring sites. Therefore, our method is also applica-
ble to this problem. Third, it can also be used for air quality
prediction [15]. Air quality has strong spatial characteristics,
and the air quality in one location can be affected by other
areas. Therefore, reasonably incorporating spatial information
can predict future air quality more accurately. Our method is
suitable for other time series prediction tasks, especially when
the problem has spatial characteristics.

VI. CONCLUSION

With the continuous growth of human activities and rapid
economic development, water environment problems become
increasingly prominent. The usage of water quality prediction
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techniques can help anticipate water quality problems and
avoid further quality deterioration of water by taking some
timely actions. However, water environment presents the
characteristics of cross-regional and multi-site interactions.
In that case, traditional water quality prediction methods
ignore the spatial correlation of water quality changes, making
it difficult to meet the demand for accurate water quality pre-
diction. Moreover, they focus on predefined graph structures to
reflect the spatial features that cannot capture potential spatial
dependencies when dealing with complex water quality data.
To solve the above problems, this work proposes a novel
water quality prediction model named Spatial-Temporal Graph
Fusion Transformer (STGFT). It incorporates a spatial and
temporal attention encoder to capture the spatial correlations
and temporal characteristics among different water quality
monitoring stations. Moreover, an adaptive dynamic adjacency
matrix generator is designed to generate adaptive and dynamic
graphs to effectively mine potential spatial dependencies in
a river network. Finally, the experimental results based on
three real-world datasets show that STGFT can achieve higher
accuracy in long-term water quality prediction than its state-
of-the-art peers.

Our future work aims to further integrate meteorology [33]
and geography [34] into our STGFT to enhance the robustness
and reliability of the model. In addition, due to the high
requirement for real-time water quality predictions, we intend
to use intelligent optimization [35] and distributed comput-
ing [36] to accelerate the training and inference process of the
model.
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