
1

Online Workload Scheduling for Social Welfare
Maximization in the Computing Continuum

Hailiang Zhao, Ziqi Wang, Guanjie Cheng, Wenzhuo Qian, Peng Chen, Jianwei Yin,
Schahram Dustdar, Fellow, IEEE, and Shuiguang Deng, Senior Member, IEEE

Abstract—Computing ecosystems are shifting toward a com-
puting continuum paradigm designed to handle the diverse and
dynamic nature of computing resources spread across various
locations. It demonstrates significant potential in providing high-
bandwidth and low-latency services for users. However, as a large
number of users request services from distributed computing
continuum systems, it is critical to schedule numerous delay-
sensitive, fractional workloads and maximum parallelism-bound
jobs to appropriate backend resources, e.g., cloud container
instances. In addition, the scheduling strategy also needs to
maximize the social welfare that incorporates the utilities of jobs
and the revenue of service providers. However, current workload
scheduling algorithms are based on simple heuristics and lack
performance guarantees. Due to the unpredictability of online
requests, the distribution of requests should not be assumed.
Therefore, designing an online workload scheduling strategy
without assumptions on request distributions is essential for
balancing the online workload. This work first establishes a spa-
tiotemporal integrated resource pool to reflect the computational
resources provided by distributed computing continuum systems.
Then, several pseudo-social welfare functions and marginal cost
functions are constructed, where the latter is used to estimate
the marginal cost of provisioning services to each newly arrived
job based on the current resource surplus. We propose an
online workload scheduling strategy named OnSocMax to solve
the above problems. It operates by following the solutions to
several convex pseudo-social welfare maximization problems and
is proven to be α-competitive for some α with a value of at least 2.
The evaluation results demonstrate that OnSocMax outperforms
several benchmark strategies in maximizing social welfare.

Index Terms—Computing continuum, mobile edge computing,
load balancing, social welfare maximization, online workload
scheduling.

I. INTRODUCTION

Nowadays, the computing continuum [1] provides a new
paradigm for users with varying computing demands, e.g.,
smart mobile devices (SMDs), intelligent campuses [2], and
industrial internet of things [3]. The computing continuum
integrates decentralized physical and virtual computing re-
sources into a holistic environment. For instance, cloud-
assisted mobile edge computing (CMEC) systems integrate
cloud and edge resources and are designed to present the
user as a single pool of resources. Thus, it can provide

Hailiang Zhao, Ziqi Wang, and Guanjie Cheng are with the School
of Software Technology, Zhejiang University. Emails: {hliangzhao, ziqi-
wang}@zju.edu.cn, guanjiech@126.com.

Wenzhuo Qian, Peng Chen, Jianwei Yin, and Shuiguang Deng are with the
College of Computer Science and Technology, Zhejiang University. Emails:
{qwz, pgchen, zjuyjw, dengsg}@zju.edu.cn.

Schahram Dustdar is with the Distributed Systems Group at the TU Wien
and with ICREA at the UPF, Barcelona. Email: dustdar@dsg.tuwien.ac.at.

high bandwidth and low latency services for users [4]. In
that case, CMEC supports applications such as digital twins,
virtual reality, and cloud games, significantly enhancing fac-
tory intelligence and enriching people’s daily lives. In the
CMEC system, some users submit computational tasks to
the system irregularly, e.g., a factory requests services from
the system to analyze the defective percentage based on the
production line camera data. To reduce the tedious process
of configuring the VM-based machines while supporting user
business logic design, serverless is introduced by utilizing the
resources in the CMEC system to handle the system adminis-
tration operations virtually [5], including installing operating
systems, libraries, and runtime dependencies. In addition, the
on-demand resource provisioning paradigm enables the CMEC
system to allocate and provide resources flexibly based on
actual demand, avoiding users’ paying for idle resources and
improving resource utilization of the system.

However, when many online requests for system services,
a fundamental challenge is to balance the system’s workload
[6]. The load balancer is a component that exposes the APIs
to the workloads by mapping the requests to carefully selected
backend resources. Theoretically, it decides how the workloads
are dispatched to distributed computing instances and how
to allocate restricted resources to them, aiming to optimize
end users’ service quality. Due to the characteristics of online
optimization, workload dispatching should be decided with-
out knowledge of job arrivals [7]. However, load balancing
strategies such as RoundRobin and SessionAffinity are simple
to operate but offer no performance guarantee. Meanwhile,
academic studies on online load balancing promise long-term
performance guarantees. They assume that jobs arrive accord-
ing to the Poisson process and that service rates of computing
instances are exponentially distributed [8]. Under stochas-
tic ordering assumption, policies including Join-the-Shortest-
Queue (JSQ), Join-the-Idle-Queue (JIQ), Power-of-d-Choices
(Pod), and Join-the-Fastest-of-the-Shortest-Queues (JFIQ) are
proposed based on Continuous-Time Markov Chains (CTMC)
and Lyapunov Stability theories. However, their performance
guarantees (mostly on mean response time) are established
on sufficient assumptions, which are tough to satisfy in real-
world systems. Further, if we consider realistic constraints,
including heterogeneous service rates, service locality1, and
strict deadlines, the performance guarantees are even harder
to achieve.

1Service locality means the required functions cannot be executed on the
chosen resource unit because the runtime or dependencies are not satisfied.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

2

Online workload scheduling for delay-sensitive jobs has
been considered mainly from the perspective of jobs’ utility
maximization. Due to the on-demand resource provisioning
paradigm [9], this work also considers the revenue of CMEC
service providers. We focus on social welfare maximization,
where the utilities of jobs and the revenue of the CMEC ser-
vice providers are maximized simultaneously. Thus, this work
studies the online workload scheduling problem for delay-
sensitive, fractional workloads and maximum parallelism-
bound jobs by maximizing the sum of utilities of both jobs
and the service provider. Our model is based on the designed
resources pool considering the spatiotemporal relationship
of multiple coupled computational units in the computing
continuum. Each arrived job with fractional workloads can
only be dispatched to its available resource units decided by
jobs’ parallelism-bound and deadline constraints. An online
workload scheduling algorithm named OnSocMax is proposed
to decide how the input workloads of arrived jobs are parti-
tioned and scheduled under realistic constraints, such as anti-
affinity, service locality, and unpredictable system failures of
computing instances, etc. In addition, we construct marginal
cost functions to estimate the marginal cost of provisioning
services to each newly arrived job based on the current
resource surplus. OnSocMax works by solving several well-
designed pseudo-social welfare maximization problems online
and has no assumptions on the arrival pattern and service
rates. Finally, this work provides rigorous analysis to show
that OnSocMax is α-competitive for some α ≥ 2. The main
contributions of this work are summarized as follows.

1) A spatiotemporal integrated resource pool and resource
units are designed for the computing continuum. Based
on this design, this work studies the online social wel-
fare maximization problem for delay-sensitive, fractional
workloads and maximum parallelism-bound jobs. The
proposed model simulates real-world online workload
scheduling in CMEC systems and only assumes the
utility functions.

2) An online workload scheduling algorithm named
OnSocMax is proposed to yield a competitive ratio of
at least 2 for general utility settings. Notably, it has a
linear complexity when the utility of jobs is linear and
shares the same coefficient.

3) This work formulates the detailed expression for the
marginal cost of each resource unit. It estimates the
cost for provisioning services to each newly arrived
job as a function of resource surplus. In addition, the
requirements of the marginal cost functions are given
to maintain the α-competitive for some underlying α of
the algorithm.

The remainder of this work is structured as follows. Section
II discusses the related work. Section III introduces the spa-
tiotemporal integrated resource pool and formulates the online
social welfare maximization problem. Section IV presents
design details of the online workload scheduling algorithm
OnSocMax with sufficient theoretical analysis. The numerical
results of the experiments are shown in Section V. Finally,
Section VI concludes this work.

II. RELATED WORKS

A. Resource and Job Scheduling in Computing Continuum

The computing continuum represents a dynamic ecosys-
tem that spans from edge devices to cloud infrastructure,
where the status of endpoint devices and edge nodes are
dynamically changed [10]. To ensure optimal performance and
reliability, the system must efficiently handle various services’
scheduling, deployment, and management to optimize quality-
of-service (QoS) requirements. CMEC is a crucial scenario in
the computing continuum to enhance service response time
and efficiency. In this system, efficient task scheduling and
reasonable resource allocation can improve its QoS. Thus,
it is aimed to develop intelligent resource allocation and
task scheduling strategies based on different realistic factors,
including computing power, resource surplus, and network
conditions. Due to the limited computing resources of small
base stations (SBSs) in the edge, service requests generally
wait in a queue for execution. These service requests vary
in terms of required resources and execution time. Therefore,
proper job scheduling in the CMEC system is necessary to
fully utilize limited resources.

In recent years, extensive research has focused on efficient
scheduling algorithms for different objectives in response to
complex online service requests. Bi et al. [11] focus on task
scheduling and resource allocation in the CMEC system to
minimize total system cost while meeting SMD’s latency re-
quirements. A two-stage metaheuristic approach named LSAG
is proposed to solve this problem. Specifically, the first stage
determines the optimal edge selection strategy for handling
cases involving multiple available SBSs. The second stage
jointly optimizes task scheduling and resource allocation in
the system. Liao et al. [12] propose an electric vehicle-assisted
edge computing architecture that leverages the idle computing
resources of electric vehicles (EVS). The goal is to reduce the
system’s energy consumption by selecting appropriate EVs to
handle service requests. The authors construct an energy-aware
workload offloading model and discretize the original model
into multiple solvable problems with small scales.

Liu et al. [13] and Chen et al. [14] focus on optimizing
latency in computing continuum systems. The former proposes
a deep learning-assisted online algorithm to optimize latency
in heterogeneous MEC systems. A deep neural network is
adopted to emulate an offline solver of this problem and
produce near-optimal solutions. The latter minimizes the av-
erage latency of SMDs by jointly optimizing communication,
computation, and caching configurations in the system. Chen
et al. [15] note that making offloading and resource allocation
decisions in mobile environments is challenging due to the dy-
namic nature of wireless channel conditions and user locations.
To address these issues, the authors investigate service collabo-
ration within SMD service chains, focusing on a master-slave
dependency model. Their goal is to minimize the system’s
latency and energy consumption. Mohajer et al. [16] propose
a dynamic optimization model to maximize energy efficiency
and system throughput in a computing continuum system.
The optimization problem is decomposed into computational
carrier scheduling and resource allocation. The authors employ

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

3

a subgradient method for computational resource allocation
and successive convex approximation with dual decomposition
methods to solve services’ fairness problems. Du et al. [17]
aims to maximize the social welfare of the CMEC system by
optimizing the allocation of computational resources and pric-
ing of computing services for each SBS. The authors propose
a two-tier algorithm to solve this problem. Specifically, the
first tier addresses the association between users and SBSs,
while the second tier focuses on resource allocation among
SBSs to effectively utilize limited computational resources.

B. Online Workload Scheduling with Load Balance

Optimizing resource allocation and achieving load balancing
are essential in online workload scheduling. It refers to the dis-
patch of numerous computational tasks to appropriate backend
resources of edge or cloud while ensuring the load balance of
the system. Load balance needs to consider a combination of
performance goals, capabilities, and constraints.

Online load balancing policies are investigated under classic
settings, where multiple identical servers with exponentially
distributed service rates process continuous arrived jobs. Based
on continuous-time Markov chain and Lyapunov stability
theories, load-balancing policies such as JSQ [18] and JIQ
[19] are proposed and analyzed on the mean response time and
cross-server communication overhead. However, JSQ lacks
a server-side perspective, and when the same service in-
stance is invoked by multiple clients, the results produced
by the JSQ algorithm are not optimal. In addition, due to its
centralized algorithmic design, it incurs high communication
overhead during distributed scheduling. JIQ, as a distributed
load-balancing algorithm, reduces communication between the
scheduler and the processor by letting newly arriving tasks
join the idle queue instead of choosing the shortest queue.
Based on the above techniques, Weng et al. [20] propose
join-the-fastest-of-the-shortest-queue (JFSQ) and JFIQ poli-
cies under heterogeneous service rates and service locality
constraints. They show that, under a well-connected bipartite
graph condition, these policies can achieve the minimum
mean response time in both the many-server and the sub-
Halfin-Whitt regimes. Wu et al. [21] develop a computational
offloading model in an MEC environment based on mean-
field game theory and introduce a mean-field game-based load-
balancing algorithm. This approach aims to reduce processing
latency and streamline task scheduling using multi-agent deep
reinforcement learning techniques. Each SMD within the MEC
system is envisioned as an active participant in the mean-field
game, transforming the intricate stochastic game into a more
tractable dual-agent game for effective workload balancing.

Another line of work studies the cost-efficient and multi-
resource sharing load balancing from a different theoretical
basis. Generally, the objective is to improve energy efficiency
with on-demand resource allocation. Thereinto, online load
balancing of delay-sensitive jobs is studied in [22]–[24]. Zheng
et al. [25] design online algorithms for fractional and non-
fractional workload models under concave utility settings. The
optimality of designed algorithms holds when all the jobs
have the same deadline and share a single resource type.

Duan et al. [26] investigate the load balance under user
mobilities features in MEC environments. The objective is to
solve the mobility-conscious online task offloading problem
that incorporates adaptive load balancing, aiming to minimize
overall computational costs. However, the complexity of this
problem is heightened by the unpredictability of future user
mobility patterns and the spatiotemporal variability of edge
server computation loads. Thus, the primary task offloading
optimization problem is strategically divided into two sub-
sidiary problems: task offloading control and server group-
ing. Then, a long short-term memory-based algorithm and a
dueling double deep Q-network-based algorithm are designed
to address these subsidiary problems, thereby enhancing load
balance within the MEC system. Online load balancing to
minimize the Nash Social Welfare is investigated in [27]. The
authors highlight two essential challenges in load balancing.
The first is selfish load balancing, characterized by clients act-
ing as non-cooperative, self-interested entities focused solely
on minimizing their costs. The second variant is online load
balancing, which involves clients arriving online and necessi-
tating irrevocable assignment to a resource without foresight
into future service requests. In addition, this work provides
tight bounds on the price of anarchy of pure Nash equilibria
and the competitive ratio of general greedy algorithms under
different latency functions.

Unlike the above works, this work is more general regarding
the concept of the resource pool and the technique of marginal
cost estimation, making it more suitable for computing contin-
uum systems. We take a CMEC system as a typical example
and aim to maximize the social welfare of the system while
balancing its workload. Social welfare incorporates the utility
of both users and service providers. The proposed online
workload scheduling algorithm OnSocMax works by solv-
ing several well-designed pseudo-social welfare maximization
problems online and has no assumptions on the arrival pattern
and service rates. It considers allocating resources over longer
time horizons and aims to maximize the cumulative social
welfare over the entire time slot. For performance guarantees,
OnSocMax is proved to be α-competitive for some α ≥ 2.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In the computing continuum paradigm, we consider a gen-
eral CMEC environment composed of multiple computing
instances distributed geographically across different SBSs and
cloud data center (CDC) sites [28]. We build our model on
serverless because it removes the need to explicitly provision
and manage computing instances. It is shown in Fig. 1 that
in a typical example of the computing continuum, CMEC
environment, each end-user establishes communications with
one or more SBSs by wired or wireless transmission. Users
can request SBS services online if they are in its coverage
area. Due to the limited computing capability of SBSs, CMEC
leverages the abundant computing resources in the cloud.
Thus, Some SBSs connect to the CDC via low-latency fiber
links [29]. In this case, each user is served by an invisible
resource pool from geographically diverse cloud container
instances from SBSs or CDC. This section first constructs the

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

4

spatiotemporal resource pool for users and then formulates the
social welfare maximization problem.

Cloud

Servers

Cloud

Servers

Cloud

Servers

SBS 3SBS 3

SBS 2SBS 2SBS 1SBS 1

Wireless connection

Wired connection

Wireless connection

Wired connection

Services requested

Fig. 1. Intensive online service requests in the CMEC system.

A. Spatio-Temporal Resource Pool

Fig. 2 shows an example resource pool for an end user in
the computing continuum paradigm. Let K denote the set of
computing instances and index each of them by k. The CMEC
system can process heterogeneous jobs arriving in sequence
with different service rates. The set of jobs is denoted as N
and indexes each job by n. Each job n has the input workloads
of size ϱn. Jobs are processed by invoking cloud functions
across different resource units, e.g. functions 1, 2, 3, and 4 in
Fig. 2.

Take the video transcoding job [30] as an example. The
inputs are raw video frames. It first partitions the input into
frame pieces at a negligible cost. Then, it parallelizes the
“slow” fragments of the encoding and performs the “fast”
pieces serially. For discrete jobs unsuitable for parallelism, our
model still applies with appropriate rounding policies, e.g., the
Fenchel duality [31] taken in [32]. ∀n ∈ N , we use an and
dn to represent its arrival time and the deadline to be finished.
To maximize the utilities of users and the revenue of the
CMEC provider from a long-term vision, the time horizon is
considered from minn∈N an to maxn∈N dn and evenly divide
the horizon into slots of length τ . Let T denote the set of time
slots and index each of them with t. The time slot length τ can
be set as one-fourth of the minimum instance reserved time,
for example, 15 minutes for AWS spot instance2.

2https://aws.amazon.com/ec2/spot/pricing/

time

nodes

|T |

<latexit sha1_base64="vQiceswvFadQN1RR5RZ6SP5U+Ds=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuCIC4r9AXtUDJppg1NMmOSKZRpwb9w40IRt36MO//GTNuFth64cDjnXnJygpgzbVz328mtrW9sbuW3Czu7e/sHxcOjho4SRWidRDxSrQBrypmkdcMMp61YUSwCTpvB8DbzmyOqNItkzYxj6gvclyxkBBsr+ZOOwGZAME9r00m3WHLL7gxolXgLUoIFqt3iV6cXkURQaQjHWrc9NzZ+ipVhhNNpoZNoGmMyxH3atlRiQbWfzkJP0ZlVeiiMlB1p0Ez9fZFiofVYBHYzy6iXvUz8z2snJrzxUybjxFBJ5g+FCUcmQlkDqMcUJYaPLcFEMZsVkQFWmBjbU8GW4C1/eZU0LsreZfnq4bJUuXua15GHEziFc/DgGipwD1WoA4FHeIZXeHNGzovz7nzMV3POosJj+APn8weDO5MC</latexit>

|K|

<latexit sha1_base64="QkrWOszZyMXHlaGAbbZKalR/p6k=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuCIIKbCvYB7VAyaaYNzSRjkimUacG/cONCEbd+jDv/xkzbhbYeuHA4515ycoKYM21c99vJrayurW/kNwtb2zu7e8X9g7qWiSK0RiSXqhlgTTkTtGaY4bQZK4qjgNNGMLjO/MaQKs2keDCjmPoR7gkWMoKNlfxxO8KmTzBP7ybjTrHklt0p0DLx5qQEc1Q7xa92V5IkosIQjrVueW5s/BQrwwink0I70TTGZIB7tGWpwBHVfjoNPUEnVumiUCo7wqCp+vsixZHWoyiwm1lGvehl4n9eKzHhlZ8yESeGCjJ7KEw4MhJlDaAuU5QYPrIEE8VsVkT6WGFibE8FW4K3+OVlUj8re+fli/vzUuXmaVZHHo7gGE7Bg0uowC1UoQYEHuEZXuHNGTovzrvzMVvNOfMKD+EPnM8fdYWS+Q==</latexit>

1

<latexit sha1_base64="Zeu2xmQqzqXd5Yl8xf1OyrE5czM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI8BQTwmYB6QLGF20puMmZ1dZmaFsAS8e/GgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaLSPJb3ZpygH9GB5CFn1Fip7vWKJbfszkBWibcgJVig1it+dfsxSyOUhgmqdcdzE+NnVBnOBE4K3VRjQtmIDrBjqaQRaj+bHTohZ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ62ZuK/3md1ITXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2RRsCN7yy6ukeVH2KuXLeqVUvX2ax5GHEziFc/DgCqpwBzVoAAOEZ3iFN+fBeXHenY95a85ZRHgMf+B8/gCkaY1B</latexit>

1

<latexit sha1_base64="Zeu2xmQqzqXd5Yl8xf1OyrE5czM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI8BQTwmYB6QLGF20puMmZ1dZmaFsAS8e/GgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaLSPJb3ZpygH9GB5CFn1Fip7vWKJbfszkBWibcgJVig1it+dfsxSyOUhgmqdcdzE+NnVBnOBE4K3VRjQtmIDrBjqaQRaj+bHTohZ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ62ZuK/3md1ITXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2RRsCN7yy6ukeVH2KuXLeqVUvX2ax5GHEziFc/DgCqpwBzVoAAOEZ3iFN+fBeXHenY95a85ZRHgMf+B8/gCkaY1B</latexit>

2

<latexit sha1_base64="Mt6Fty0QZU/eoQ2SoI5lgEfXo6s=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hd0Q0WNAEI8JmAckS5id9CZjZmeXmVkhLAHvXjwo4tVP8ubfOHkcNLGgoajqprsrSATXxnW/nbX1jc2t7dxOfndv/+CwcHTc1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3HlFpHst7M07Qj+hA8pAzaqxUL/cKRbfkzkBWibcgRVig1it8dfsxSyOUhgmqdcdzE+NnVBnOBE7y3VRjQtmIDrBjqaQRaj+bHToh51bpkzBWtqQhM/X3REYjrcdRYDsjaoZ62ZuK/3md1ITXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2eRtCN7yy6ukWS55ldJlvVKs3j7N48jBKZzBBXhwBVW4gxo0gAHCM7zCm/PgvDjvzse8dc1ZRHgCf+B8/gCl7Y1C</latexit>

2

<latexit sha1_base64="Mt6Fty0QZU/eoQ2SoI5lgEfXo6s=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hd0Q0WNAEI8JmAckS5id9CZjZmeXmVkhLAHvXjwo4tVP8ubfOHkcNLGgoajqprsrSATXxnW/nbX1jc2t7dxOfndv/+CwcHTc1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3HlFpHst7M07Qj+hA8pAzaqxUL/cKRbfkzkBWibcgRVig1it8dfsxSyOUhgmqdcdzE+NnVBnOBE7y3VRjQtmIDrBjqaQRaj+bHToh51bpkzBWtqQhM/X3REYjrcdRYDsjaoZ62ZuK/3md1ITXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2eRtCN7yy6ukWS55ldJlvVKs3j7N48jBKZzBBXhwBVW4gxo0gAHCM7zCm/PgvDjvzse8dc1ZRHgCf+B8/gCl7Y1C</latexit>

3

<latexit sha1_base64="3C55rmpvNGlmKjSbbOldWtwNfxw=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV2N6DEgiMcEzAOSJcxOepMxs7PLzKwQloB3Lx4U8eonefNvnDwOmljQUFR1090VJIJr47rfzsrq2vrGZm4rv72zu7dfODhs6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4M/Gbj6g0j+W9GSXoR7QvecgZNVaqXXQLRbfkTkGWiTcnRZij2i18dXoxSyOUhgmqddtzE+NnVBnOBI7znVRjQtmQ9rFtqaQRaj+bHjomp1bpkTBWtqQhU/X3REYjrUdRYDsjagZ60ZuI/3nt1ITXfsZlkhqUbLYoTAUxMZl8TXpcITNiZAllittbCRtQRZmx2eRtCN7iy8ukcV7yyqXLWrlYuX2axZGDYziBM/DgCipwB1WoAwOEZ3iFN+fBeXHenY9Z64ozj/AI/sD5/AGncY1D</latexit>

3

<latexit sha1_base64="3C55rmpvNGlmKjSbbOldWtwNfxw=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV2N6DEgiMcEzAOSJcxOepMxs7PLzKwQloB3Lx4U8eonefNvnDwOmljQUFR1090VJIJr47rfzsrq2vrGZm4rv72zu7dfODhs6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4M/Gbj6g0j+W9GSXoR7QvecgZNVaqXXQLRbfkTkGWiTcnRZij2i18dXoxSyOUhgmqddtzE+NnVBnOBI7znVRjQtmQ9rFtqaQRaj+bHjomp1bpkTBWtqQhU/X3REYjrUdRYDsjagZ60ZuI/3nt1ITXfsZlkhqUbLYoTAUxMZl8TXpcITNiZAllittbCRtQRZmx2eRtCN7iy8ukcV7yyqXLWrlYuX2axZGDYziBM/DgCipwB1WoAwOEZ3iFN+fBeXHenY9Z64ozj/AI/sD5/AGncY1D</latexit>

4

<latexit sha1_base64="2HyKJRcLOtzYGFelwVtSC0XLkXE=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBKp1GNBEI8V7Ae0oWy2k3btZhN2N0IJBe9ePChe/U3e/DduPw7a+mDg8d4MM/PCVHBtPO/bKWxsbm3vFHfdvf2Dw6OSe9zSSaYYNlkiEtUJqUbBJTYNNwI7qUIahwLb4fhm5refUGmeyAczSTGI6VDyiDNqrHRf7ZfKXsWbg6wTf0nKsESjX/rqDRKWxSgNE1Trru+lJsipMpwJnLq9TGNK2ZgOsWuppDHqIJ8fOiXnVhmQKFG2pCFz9fdETmOtJ3FoO2NqRnrVm4n/ed3MRNdBzmWaGZRssSjKBDEJmX1NBlwhM2JiCWWK21sJG1FFmbHZuDYEf/XlddK6rPjVylW5fvu8CKMIp3AGF+BDDepwBw1oAgOEF3iDd+fReXU+Fo0FZxnfCfyB8/kDPXeMGg==</latexit>

4

<latexit sha1_base64="2HyKJRcLOtzYGFelwVtSC0XLkXE=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBKp1GNBEI8V7Ae0oWy2k3btZhN2N0IJBe9ePChe/U3e/DduPw7a+mDg8d4MM/PCVHBtPO/bKWxsbm3vFHfdvf2Dw6OSe9zSSaYYNlkiEtUJqUbBJTYNNwI7qUIahwLb4fhm5refUGmeyAczSTGI6VDyiDNqrHRf7ZfKXsWbg6wTf0nKsESjX/rqDRKWxSgNE1Trru+lJsipMpwJnLq9TGNK2ZgOsWuppDHqIJ8fOiXnVhmQKFG2pCFz9fdETmOtJ3FoO2NqRnrVm4n/ed3MRNdBzmWaGZRssSjKBDEJmX1NBlwhM2JiCWWK21sJG1FFmbHZuDYEf/XlddK6rPjVylW5fvu8CKMIp3AGF+BDDepwBw1oAgOEF3iDd+fReXU+Fo0FZxnfCfyB8/kDPXeMGg==</latexit>

5

<latexit sha1_base64="9Jl9nC/6YSLGObUum0MWlAdnF1I=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKQY8BQTwmYB6QLGF20puMmZ1dZmaFsAS8e/GgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaLSPJb3ZpygH9GB5CFn1FipXukVS27ZnYGsEm9BSrBArVf86vZjlkYoDRNU647nJsbPqDKcCZwUuqnGhLIRHWDHUkkj1H42O3RCzqzSJ2GsbElDZurviYxGWo+jwHZG1Az1sjcV//M6qQmv/YzLJDUo2XxRmApiYjL9mvS5QmbE2BLKFLe3EjakijJjsynYELzll1dJ86LsXZYr9ctS9fZpHkceTuAUzsGDK6jCHdSgAQwQnuEV3pwH58V5dz7mrTlnEeEx/IHz+QOqeY1F</latexit>

R1

<latexit sha1_base64="s8II00DhSRhq2skFfXaU3yqzizQ=">AAAB9HicdVDLSgMxFL1TX7W+qi7dBIvgapgpLXZZEMRlFfuAdiiZNNOGZjJjkimUoeBfuHGhiFs/xp1/Y6atoEUPhBzOuZecHD/mTGnH+bRya+sbm1v57cLO7t7+QfHwqKWiRBLaJBGPZMfHinImaFMzzWknlhSHPqdtf3yZ+e0JlYpF4k5PY+qFeChYwAjWRvJ6IdYjgnl6O+u7/WLJsWtOBuTY5RXi2vPbKcESjX7xozeISBJSoQnHSnVdJ9ZeiqVmhNNZoZcoGmMyxkPaNVTgkCovnYeeoTOjDFAQSXOERnP150aKQ6WmoW8ms5Bq1cvEv7xuooOalzIRJ5oKsngoSDjSEcoaQAMmKdF8aggmkpmsiIywxESbngqmhO+fov9Jq2y7Fbt6UynVrx4WdeThBE7hHFy4gDpcQwOaQOAeHuEZXqyJ9WS9Wm+L0Zy1rPAYfsF6/wLzQZKk</latexit>

R2

<latexit sha1_base64="Ak+Z1w1Rt0NpFZU6u7Gd+gWNTqw=">AAAB9HicbZBLSwMxFIXv1Fetr6pLN8EiuCozpUXdFQRxWcU+oB1KJs20oZnMNMkUylDwX7hxoYhbf4w7/42ZPkCtFwKHc27IyedFnClt219WZm19Y3Mru53b2d3bP8gfHjVUGEtC6yTkoWx5WFHOBK1rpjltRZLiwOO06Q2v07w5plKxUDzoSUTdAPcF8xnB2lhuJ8B6QDBP7qfdUjdfsIv2bJBddMoV+6qEnKWzFAVYTK2b/+z0QhIHVGjCsVJtx460m2CpGeF0muvEikaYDHGfto0UOKDKTWalp+jMOD3kh9IcodHM/XkjwYFSk8Azm2lJ9TdLzf+ydqz9SzdhIoo1FWT+kB9zpEOUEkA9JinRfGIEJpKZrogMsMREG045A2Hly6uiUTJ8ipW7cqF68zjHkYUTOIVzcOACqnALNagDgRE8wQu8WmPr2Xqz3uerGWuB8Bh+jfXxDQLtkq8=</latexit>

R3

<latexit sha1_base64="2XZnP9iN+S6jlbzFfRSKWsFXkEs=">AAAB9HicdVDLSgMxFM3UV62vqks3wSK4Gmam711BEJdV7APaoWTSTBuayYxJplCGgn/hxoUibv0Yd/6NmbaCih64cDjnXnJyvIhRqSzrw8isrW9sbmW3czu7e/sH+cOjtgxjgUkLhywUXQ9JwignLUUVI91IEBR4jHS8yUXqd6ZESBryWzWLiBugEac+xUhpye0HSI0xYsnNfFAc5AuWaVUrds2GlulU6k6prIldLxedCrRNa4ECWKE5yL/3hyGOA8IVZkjKnm1Fyk2QUBQzMs/1Y0kihCdoRHqachQQ6SaL0HN4ppUh9EOhhyu4UL9fJCiQchZ4ejMNKX97qfiX14uVX3MTyqNYEY6XD/kxgyqEaQNwSAXBis00QVhQnRXiMRIIK91TTpfw9VP4P2k7pl0yy9elQuPyfllHFpyAU3AObFAFDXAFmqAFMLgDD+AJPBtT49F4MV6XqxljVeEx+AHj7RNT+JLn</latexit>

R4

<latexit sha1_base64="5+nFBF0ujDgBdFWu1MxbJ5KSYkc=">AAAB9HicdVDNSgMxGMzWv1r/qh69BIvgadnULm1vBUE8VrG20C4lm2bb0Gx2TbKFshR8Cy8eFPHqw3jzbcy2FVR04INh5vvIZPyYM6Ud58PKrayurW/kNwtb2zu7e8X9g1sVJZLQFol4JDs+VpQzQVuaaU47saQ49Dlt++PzzG9PqFQsEjd6GlMvxEPBAkawNpLXC7EeEczT61m/0i+WHLuM3LLrQseuIoQcx5Ba/axWdyGynTlKYIlmv/jeG0QkCanQhGOlusiJtZdiqRnhdFboJYrGmIzxkHYNFTikykvnoWfwxCgDGETSjNBwrn6/SHGo1DT0zWYWUv32MvEvr5vooOalTMSJpoIsHgoSDnUEswbggElKNJ8agolkJiskIywx0aanginh66fwf3JbtlHFdq8qpcbF/aKOPDgCx+AUIFAFDXAJmqAFCLgDD+AJPFsT69F6sV4XqzlrWeEh+AHr7RNNpJLj</latexit>

…

…
job 1:

job 2:

job 3:

job 4:

t 2 {1, ..., 3}

<latexit sha1_base64="SF0Cu2OvsBhpGImrz8OddgRiXb0=">AAAB/HicbZBLSwMxFIUzPmt9jXbpJlgEF2WY0YouC4K4rGAf0BlKJs20oZnMkNwRylDxn7hxoYhbf4g7/43pY6GtBwIf59yQmxOmgmtw3W9rZXVtfWOzsFXc3tnd27cPDps6yRRlDZqIRLVDopngkjWAg2DtVDESh4K1wuH1JG89MKV5Iu9hlLIgJn3JI04JGKtrlwD7XGI/9yrYcZwKPvfHXbvsOu5UeBm8OZTRXPWu/eX3EprFTAIVROuO56YQ5EQBp4KNi36mWUrokPRZx6AkMdNBPl1+jE+M08NRosyRgKfu7xs5ibUexaGZjAkM9GI2Mf/LOhlEV0HOZZoBk3T2UJQJDAmeNIF7XDEKYmSAUMXNrpgOiCIUTF9FU4K3+OVlaJ45XtW5uKuWazdPszoK6Agdo1PkoUtUQ7eojhqIohF6Rq/ozXq0Xqx362M2umLNKyyhP7I+fwBdGZMS</latexit>

t 2 {1, ..., 4}

<latexit sha1_base64="ESLZ7o5QGvtHRxO5Cjq8zIryjmw=">AAAB/HicbZBLSwMxFIUz9VXra7RLN8EiuCjDjFR0WRDEZQX7gM5QMmnahmYyQ3JHGIaK/8SNC0Xc+kPc+W9MHwttPRD4OOeG3JwwEVyD635bhbX1jc2t4nZpZ3dv/8A+PGrpOFWUNWksYtUJiWaCS9YEDoJ1EsVIFArWDsfX07z9wJTmsbyHLGFBRIaSDzglYKyeXQbsc4n93Ktix3GquOZPenbFddyZ8Cp4C6ighRo9+8vvxzSNmAQqiNZdz00gyIkCTgWblPxUs4TQMRmyrkFJIqaDfLb8BJ8ap48HsTJHAp65v2/kJNI6i0IzGREY6eVsav6XdVMYXAU5l0kKTNL5Q4NUYIjxtAnc54pREJkBQhU3u2I6IopQMH2VTAne8pdXoXXueDXn4q5Wqd88zesoomN0gs6Qhy5RHd2iBmoiijL0jF7Rm/VovVjv1sd8tGAtKiyjP7I+fwBen5MT</latexit>

t 2 {2, ..., |T |}

<latexit sha1_base64="VvvOPCGn3Kwc8sI0JwUhjpYSxNE=">AAACCHicbVDLSsNAFJ34rPUVdenCwSK4KCEpFV0WBHFZoS9oQplMJ+3QySTMTISSBty48VfcuFDErZ/gzr9x0nahrQcuHM65l3vv8WNGpbLtb2NldW19Y7OwVdze2d3bNw8OWzJKBCZNHLFIdHwkCaOcNBVVjHRiQVDoM9L2R9e5374nQtKIN9Q4Jl6IBpwGFCOlpZ55oqBLOXTTShlallWGEzdEaogRSxvZxM16Zsm27CngMnHmpATmqPfML7cf4SQkXGGGpOw6dqy8FAlFMSNZ0U0kiREeoQHpaspRSKSXTh/J4JlW+jCIhC6u4FT9PZGiUMpx6OvO/Eq56OXif143UcGVl1IeJ4pwPFsUJAyqCOapwD4VBCs21gRhQfWtEA+RQFjp7Io6BGfx5WXSqlhO1bq4q5ZqNw+zOArgGJyCc+CAS1ADt6AOmgCDR/AMXsGb8WS8GO/Gx6x1xZhHeAT+wPj8AXj7mNI=</latexit>

t 2 {4, ..., |T |}

<latexit sha1_base64="LwIRU7gp1nAVq7qFl3JQ8H40MEk=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhbBRQmJVHRZEMRlhb6gCWUynbRDJ5MwMxFKGnDjxl9x40IRt36CO//GSduFth64cDjnXu69x48Zlcq2v43Cyura+kZxs7S1vbO7Z+4ftGSUCEyaOGKR6PhIEkY5aSqqGOnEgqDQZ6Ttj65zv31PhKQRb6hxTLwQDTgNKEZKSz3zWEGXcuim1Qq0LKsCJ26I1BAjljayiZv1zLJt2VPAZeLMSRnMUe+ZX24/wklIuMIMSdl17Fh5KRKKYkaykptIEiM8QgPS1ZSjkEgvnT6SwVOt9GEQCV1cwan6eyJFoZTj0Ned+ZVy0cvF/7xuooIrL6U8ThTheLYoSBhUEcxTgX0qCFZsrAnCgupbIR4igbDS2ZV0CM7iy8ukdW45Vevirlqu3TzM4iiCI3ACzoADLkEN3II6aAIMHsEzeAVvxpPxYrwbH7PWgjGP8BD8gfH5A3wvmNQ=</latexit>

Fig. 2. Available resource units for four jobs in global resource mesh. Whether
a resource unit r is available or not to job n is decided by both Rn and χnr .

To manipulate the computing resources in K from both
dimensions of time and space, we introduce a spatio-temporal
resource division model named resource pool. R := K × T
denotes the set of resource units and indexes each of them by
r. Each resource unit r can process at most Cr workloads of all
jobs. This value could be obtained through various approaches,
from static code analysis to profiling previous runs based on
hardware heterogeneity [33]. For each job n ∈ N , its available
resource units must be available during its arrival time and
deadline, i.e.,

Rn :=
{
rkt ∈ R |

⌈an
τ

⌉
≤ t ≤

⌊dn
τ

⌋
, k ∈ K

}
. (1)

B. Utility and Revenue Functions

This section introduces the utility of users and the revenue
function of CMEC service providers. For each job n ∈ N , we
need to decide how to dispatch the workloads to its available
resource units under parallelism limit and deadline constraint
for maximizing the social welfare, which is the sum of all
jobs’ utilities and the revenue of the CMEC service providers.
Formally, xnr is adopted to denote the size of workloads
dispatched to r ∈ Rn and χnr to denote the parallelism bound
when it is processed on r. It results to the constraint 0 ≤ xnr ≤
χnr. This constraint avoids too high degree of parallelism
that leads to non-neglectable communication overhead and
even unforeseen errors [34]. In addition, this formulation takes
the anti-affinity, service locality, and unpredictable system
failure of computing instances into consideration. When those
conditions happen to resource unit r during processing the
n-th job, χnr can be set as zero online.

For the utility function for users, a zero-startup utility
function is adopted, i.e., fn : [0,χn] → R, where χn :=
{χnr}r∈Rn

, as the measurement of user satisfaction for job

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

5

n. As a widely accepted assumption in previous works [35]–
[37], we require {fn}n∈N to be non-decreasing, concave,
and continuously differentiable on each dimension r, e.g.,
when users receive more services, their utility should not
be decreased. Proportional fairness and α-fairness are good
options for {fn}n∈N . It is worth noting that jobs are allowed
with different utility functions in N because each job has its
own service requirement. For each job n ∈ N , its utility is a
sum of separate sub-utilities achieved through each available
resource unit:

fn(xn) :=
∑

r∈Rn

fnr(xnr),∀n ∈ N , (2)

where xn := {xnr}r∈Rn
. For a given job n, fnr can also

differ on different resource units r ∈ Rn. To sum up, a job
can be described with the quadruple {ϱn,Rn,χn, fn}.

CMEC services come with a pay-for-value billing model,
i.e., users only need to pay for the usage of the service instead
of paying for the idle resources. Thus, its revenue is linearly
proportional to the actual resource consumption. Formally, we
define the revenue for provisioning resource r ∈ R as

gnr(xnr) := βnr ·
xnr

Cr
,∀n ∈ N , r ∈ Rn, (3)

where xnr

Cr
is the fractional resource consumed by xnr, and

βnr is a ratio indicating the unit price per resource unit for
job n. For instance, βnr equals to $0.015 when the raw video’s
resolution is less than 1280×720 with Google Transcoder API
[38]. Actually, our model is consistent with all the mainstream
platform providers’ pricing strategies [39]–[41].

C. Online Social Welfare Maximization

Based on the above analysis, the social welfare maximiza-
tion problem can be fumulated as follows:

P1 : max
{xn}n∈N

∑

n∈N
fn(xn) +

∑

n∈N

∑

r∈Rn

gnr(xnr)

s.t.
∑

r∈Rn

xnr ≤ ϱn,∀n ∈ N , (4)

xnr = 0,∀n ∈ N , r ∈ R\Rn, (5)∑

n∈N
xnr ≤ Cr,∀r ∈ R, (6)

0 ≤ xnr ≤ χnr,∀n ∈ N , r ∈ Rn, (7)

where (4) denotes that the sum of the workloads of all available
resource units assigned to task n must be less or equal to its
total workload. (5) ensures that tasks can only be dispatched to
their available resource units. (6) denotes that for each resource
unit r, the sum of the workloads of all tasks assigned to it
must be less or equal to its maximum processing capacity. (7)
ensures that each task’s workload on each resource unit cannot
exceed its maximum allowed parallelism.

As an online optimization problem, although P1 is difficult
to solve3, it is built based on complete knowledge. In online
settings, the CMEC service providers should not have the

3The discrete version of P1 is essentially a multi-dimensional 0-1 knapsack
problem, which is proved to be NP-complete.

information of the n-th quadruple {ϱn,Rn,χn, fn} until
job n arrives. In this work, we introduce the value density
to design an efficient online algorithm with the worst-case
performance guarantee. It is lower and upper bounded by ι
and υ, respectively:





ι := minn∈N minr∈Rn

(
∂fn
∂xnr

+ βnr

Cr

)

υ := maxn∈N maxr∈Rn

(
∂fn
∂xnr

+ βnr

Cr

)
.

(8)

ι and υ denote the maximum and minimal marginal utility
of job n to dispatch the workload on a resource unit r
plus the unit revenue the CMEC service providers gained,
respectively. They also represent the marginal social welfare
in the most conservative and optimistic case of the system,
i.e., the minimum and maximum social welfare per unit of
additional workload. ι and υ are assumed that the CEMC
service supplier know them at the very beginning. Those two
constants demonstrate the fluctuation of the marginal social
welfare. This assumption is widely accepted in the online
resource allocation problems [42]–[44]. For example, in [43],
the fluctuation ratio υ

ι is set as 36 in default. Later in the
algorithm design, they help define the range of the marginal
cost function.

IV. ALGORITHM DESIGN WITH THEORETICAL ANALYSIS

The key challenge to solve P1 in online settings is that
the dispatching of each job’s workloads to each resource
unit is coupled because of (6), i.e., each resource unit may
process workload from different jobs. Nevertheless, if we
could construct several feasible dual variables corresponding
to P1, and take these dual variables as the cost for using
each resource unit, a near-optimal solution could be obtained.
Thus, several pseudo-social welfare functions with estimated
marginal costs are constructed to do this. In this design, an
important principle is utilized for solving online resource
allocation problems, i.e., estimate the cost for provisioning
services to each newly arrived job as a function of resource
surplus. In the following sections, we first show how pseudo-
social welfare functions are designed. Then, based on these
functions, OnSocMax is designed by solving several pseudo-
social welfare maximization problems online. To guarantee
OnSocMax is α-competitive, we demonstrate what require-
ments the cost functions should satisfy. Finally, we give the
bound of the gap between the competitive ratio achieved by
OnSocMax and the optimal competitive ratio of a simplified
case under certain conditions.

A. Pseudo-Social Welfare Function

Due to the complexity and multiple constraints of P1, it is
difficult to solve. Thus, we introduce its dual problem P2 by
Lagrangian method, which is shown as follows.

Proposition 1.

P2 : min
µ,λ

∑

n∈N

∑

r∈R
ξnr(µn + λr) +

∑

n∈N
µnϱn +

∑

r∈R
λrCr

s.t. (5), (7),µ ≥ 0,λ ≥ 0,

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

6

where

ξnr(p) := max
xnr∈[0,χnr]

[
fnr(xnr)+

(
gnr(xnr)− p ·xnr

)]
. (9)

Here µ := {µn}n∈N and λ := {λr}r∈R are the dual
variables corresponding to (4) and (6), respectively. ξnr(·) is
known as the convex conjugate of the fractional social welfare
fnr + gnr. It is shown that p can denote the marginal cost for
providing unit workload of CMEC service providers. It can
also be expressed as:

ξnr(p) := max
xnr∈[0,χnr]

[(
fnr(xnr)−p·xnr

)
+gnr(xnr)

]
, (10)

where p can denote the marginal cost for processing unit
workload by users.

Proof. The result is obtained with Lagrangian. After intro-
ducing the Lagrange multipliers µ and λ, we can construct
the Lagrange function as:

L(x, µ, λ) =
∑

n∈N

fn(xn) +
∑

n∈N

∑

r∈Rn

gnr(xnr)−

∑

n∈N

µn

(∑

r∈Rn

xnr − ϱn

)
−
∑

r∈R

λr

(∑

n∈N

xnr − Cr

)
.

(11)
Then, P1 is transformed into a minimization problem P2

through the duality method. It aims to minimize the expected
value of the Lagrangian function for the dual variables µ
and λ, i.e., P2. Then, a maximization operation is performed
for each xnr to find the optimal resource allocation strategy.
Specifically, we aim to maximize the net benefit of task n on
resource unit r when given the price p = µn + λr, which
can be achieved through the maximum of each job’s local
optimization problem ξnr(p).

Thus, for each arrived job n, we define the pseudo-social
welfare function, denoted by W̃n(xn), as

(
fn(xn)−

∑

r∈Rn

∫ ω(n)
r +xnr

ω
(n)
r

ϕr(u)du
)
+
∑

r∈Rn

gnr(xnr), (12)

where ω
(n)
r denotes the resource usage level of job n on

resources unit r. ϕr is a non-decreasing estimation of the
marginal cost for the resource unit r ∈ R processing unit
workload when the resource surplus u ∈ [0, Cr]. We also define
ϕr(u) = +∞ when u > Cr. The non-decreasing property
profoundly reflects an underlying economic phenomenon, i.e.,
a thing is valued in proportion to its rarity. The later a job
arrives, the higher cost it has to pay. The first component is the
pseudo-utility of job n, which is the utility of it minus the cost
to pay. The second component is the platform’s revenue. This
is corresponding to (10). In addition, if we organize W̃n(xn)
as

fn(xn) +
∑

r∈Rn

(
gnr(xnr)−

∫ ω(n)
r +xnr

ω
(n)
r

ϕr(u)du
)
, (13)

it is corresponding to (9). The second component can be
regarded as the net profit of the platform for serving job n. In
this case, the later a job arrives, the harder the resource surplus

to meet its requirements, which results in higher costs. The
following content applies to both of these two interpretations.

In that case, the designed pseudo welfare function W̃n has a
very close relationship to P2. To bridge connections between
the optimal dual variables of P1 and the optimal solution x⋆

n

that maximizes W̃n, if we could find appropriate p⋆ and x⋆
n,

we can bridge their connection through

W̃n(x
⋆
n) ≈

∑

r∈Rn

ξnr(p
⋆). (14)

Based on this, we can interpret p as the marginal cost for
processing unit workload. We bridge the subtle connection
between ξnr and W̃n in the following proposition, which is
crucial for the design of OnSocMax.

Proposition 2. ∀n ∈ N , r ∈ R, when ϕr(Cr) ≥ υ, if (i)
x⋆
n = {x⋆

nr}r∈Rn
and µ⋆

n are respectively the optimal primal
and dual solutions to (4) of the following problem P3:

P3 : max
xn

W̃n(xn)

s.t. (4), (5), (7),

and (ii) the resource usage level ωr is updated by the optimal
solution of each job, i.e.,

{
ω
(n+1)
r = ω

(n)
r + x⋆

nr

ω
(1)
r = 0,

(15)

then, x⋆
nr is also the optimal solution that maximizes ξnr(p)

given p = ϕr(ω
(n+1)
r) + µ⋆

n, where ϕr(ω
(n+1)
r) is used to

estimate λ⋆
r . Thus, we need to prove the following equation

holds:

ξnr

(
ϕr(ω

(n+1)
r) + µ⋆

n

)
= fnr(x

⋆
nr) + gnr(x

⋆
nr)

−
(
ϕr(ω

(n+1)
r) + µ⋆

n

)
x⋆
nr. (16)

Proof. By the definition of the non-decreasing marginal cost
function ϕr(·), we can find that it is discontinuous at Cr. Thus,
when ϕr(Cr) ≥ υ, there must exist a resource usage level
ωr ≤ Cr such that ϕr(ωr) = υ. Note that the function fn +∑

r∈Rn
gnr is non-decreasing and its derivative on r is not

more than υ. Therefore, when the input of ϕr is ω
(n)
r + xnr,

suppose ω
(n)
r + xnr ≤ ωr. Consequently, the derivative of the

integral function

Φr(xnr) :=

∫ ω(n)
r +xnr

ω
(n)
r

ϕr(u)du, (17)

is continuous, non-decreasing, and convex when xnr ≤ ωr −
ω
(n)
r . The convexity is because Φ′

r, i.e., ϕr, is non-decreasing
and its derivative is greater than zero. Thus, P3 is a convex
optimization program, and its optimal solution can be obtained
through KKT conditions. Let x⋆

nr denotes the optimal primal
solution of P3. µ⋆

n, γ⋆
nr, and ζ⋆nr denote the optimal dual

solutions of P3 (µ⋆
n to (4) while γnr and ζnr to the right part

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

7

and left part of (7), respectively). The Karush-Kuhn-Tucker
(KKT) conditions of P3 are listed below:




f ′
nr(x

⋆
nr) +

βnr

Cr
− ϕr

(
ω
(n+1)
r

)
= µ⋆

n + γ⋆
nr − ζ⋆nr

µ⋆
n

(∑
r∈Rn

x⋆
nr − ϱn

)
= 0

ζ⋆nr · x⋆
nr = 0

γ⋆
nr

(
x⋆
nr − χnr

)
= 0.

(18)

The first equation of (18) denotes the gradient of P3 at xnr

direction is zero, and the remaining three equations represent
the complementary slackness condition of (4) and (7). With
KKT conditions (18), we show that the optimal solution x⋆

nr

of P3 simultaneously optimizes the conjugate ξnr(p) given
p = ϕr(ω

(n+1)
r) + µ⋆

n. Specifically, three different cases are
discussed.

• Case I: When f ′
nr(x

⋆
nr) +

βnr

Cr
> ϕr(ω

(n+1)
r) + µ⋆

n, W̃n

is an increasing function on dimension r under (4). Thus,
we have x⋆

nr = χnr, which leads to

f ′
nr(χnr) +

βnr

Cr
> ϕr(ω

(n+1)
r) + µ⋆

n. (19)

(19) is the derivative of fnr(xnr) +
(
gnr(xnr) − pxnr

)

by setting p as ϕr(ω
(n+1)
r)+µ⋆

n. Thus, it is monotone in-
creasing in the feasible region [0, χnr]. Therefore, x⋆

nr =
χnr = argmax0≤xnr≤χnr

[
fnr(xnr)+gnr(xnr)−p·xnr

]
,

which means the same x⋆
nr maximizes both P3 and the

conjugate simultaneously given p = ϕr(ω
(n+1)
r) + µ⋆

n.
Thus, (16) holds.

• Case II: When f ′
nr(x

⋆
nr) +

βnr

Cr
< ϕr(ω

(n+1)
r) + µ⋆

n,
similarly, we have x⋆

nr = 0, which leads to

f ′
nr(0) +

βnr

Cr
< ϕr(ω

(n)
r) + µ⋆

n, (20)

and ω
(n+1)
r = ω

(n)
r +0 = ω

(n)
r . Analogously, (20) means

that fnr(xnr)+
(
gnr(xnr)−p·xnr

)
is monotone decreas-

ing in feasible region [0, χnr] given p = ϕr(ω
(n+1)
r)+µ⋆

n.
Therefore, x⋆

nr = 0 = argmax0≤xnr≤χnr

[
fnr(xnr) +

gnr(xnr)− p · xnr

]
, which also leads to (16).

• Case III: When f ′
nr(x

⋆
nr) +

βnr

Cr
= ϕr(ω

(n+1)
r) + µ⋆

n,
x⋆
nr is an maximum of fnr(xnr) +

(
gnr(xnr)− p · xnr

)

given p = ϕr(ω
(n+1)
r) + µ⋆

n. In addition, ζ⋆nr · x⋆
nr = 0,

γ⋆
nr

(
x⋆
nr − χnr

)
= 0, x⋆

nr ̸= 0, and x⋆
nr ̸= χnr. Thus,

γ⋆
nr = ζ⋆nr = 0. x⋆

nr ∈ argmax0≤xnr≤χnr

[
fnr(xnr) +

gnr(xnr)− p · xnr

]
, which means (16) holds.

In summary, all three conditions prove that (16) holds. They
are visualized in Fig. 3.

So far, we have analyzed the properties of the pseudo-
social welfare functions and the conjugates. We prove that the
optimal solution x⋆

nr of the pseudo-social welfare functions is
also the optimal solution that maximizes the conjugates ξnr(p)
given p = ϕr(ω

(n+1)
r) + µ⋆

n. In addition, Fig. 4 shows the
relation of the proposed P1, P2, P3 and the conjugate. In
the following sections, we will first give the design details
of the online algorithm OnSocMax by solving P3. Then,
we illustrate what requirements the marginal cost functions
{ϕr}r∈R should satisfy to make OnSocMax α-competitive
for some underlying α.

xnr

<latexit sha1_base64="eG4pWIWeRXDsGtQBEElZu5OSKPs=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoseCF48V7Ae0a8mm2TY2myxJVixL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIb63nfqLCyura+UdwsbW3v7O6V9w+aRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuHoeuq3Hpk2XMk7O05YEJOB5BGnxDqp+dTLpJ70yhWv6s2Al4mfkwrkqPfKX92+omnMpKWCGNPxvcQGGdGWU8EmpW5qWELoiAxYx1FJYmaCbHbtBJ84pY8jpV1Ji2fq74mMxMaM49B1xsQOzaI3Ff/zOqmNroKMyyS1TNL5oigV2Co8fR33uWbUirEjhGrubsV0SDSh1gVUciH4iy8vk+ZZ1T+vXtyeV2r3eRxFOIJjOAUfLqEGN1CHBlB4gGd4hTek0At6Rx/z1gLKZw7hD9DnDwv/j4k=</latexit>

xnr

<latexit sha1_base64="eG4pWIWeRXDsGtQBEElZu5OSKPs=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoseCF48V7Ae0a8mm2TY2myxJVixL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIb63nfqLCyura+UdwsbW3v7O6V9w+aRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuHoeuq3Hpk2XMk7O05YEJOB5BGnxDqp+dTLpJ70yhWv6s2Al4mfkwrkqPfKX92+omnMpKWCGNPxvcQGGdGWU8EmpW5qWELoiAxYx1FJYmaCbHbtBJ84pY8jpV1Ji2fq74mMxMaM49B1xsQOzaI3Ff/zOqmNroKMyyS1TNL5oigV2Co8fR33uWbUirEjhGrubsV0SDSh1gVUciH4iy8vk+ZZ1T+vXtyeV2r3eRxFOIJjOAUfLqEGN1CHBlB4gGd4hTek0At6Rx/z1gLKZw7hD9DnDwv/j4k=</latexit>

xnr

<latexit sha1_base64="eG4pWIWeRXDsGtQBEElZu5OSKPs=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoseCF48V7Ae0a8mm2TY2myxJVixL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIb63nfqLCyura+UdwsbW3v7O6V9w+aRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuHoeuq3Hpk2XMk7O05YEJOB5BGnxDqp+dTLpJ70yhWv6s2Al4mfkwrkqPfKX92+omnMpKWCGNPxvcQGGdGWU8EmpW5qWELoiAxYx1FJYmaCbHbtBJ84pY8jpV1Ji2fq74mMxMaM49B1xsQOzaI3Ff/zOqmNroKMyyS1TNL5oigV2Co8fR33uWbUirEjhGrubsV0SDSh1gVUciH4iy8vk+ZZ1T+vXtyeV2r3eRxFOIJjOAUfLqEGN1CHBlB4gGd4hTek0At6Rx/z1gLKZw7hD9DnDwv/j4k=</latexit>

fnr + gnr � pxnr

<latexit sha1_base64="4q07QZyi3D/ovSbNEwNynr1VYi0=">AAACA3icbZDLSsNAFIZPvNZ6i7rTzWARBLEkUtFlwY3LCvYCbQyT6aQdOpmEmYlYQsGNr+LGhSJufQl3vo3TtAtt/WHg4z/ncOb8QcKZ0o7zbS0sLi2vrBbWiusbm1vb9s5uQ8WpJLROYh7LVoAV5UzQumaa01YiKY4CTpvB4Gpcb95TqVgsbvUwoV6Ee4KFjGBtLN/eD/1MyBE6Qb0JnKIEPeTo2yWn7ORC8+BOoQRT1Xz7q9ONSRpRoQnHSrVdJ9FehqVmhNNRsZMqmmAywD3aNihwRJWX5TeM0JFxuiiMpXlCo9z9PZHhSKlhFJjOCOu+mq2Nzf9q7VSHl17GRJJqKshkUZhypGM0DgR1maRE86EBTCQzf0WkjyUm2sRWNCG4syfPQ+Os7FbK5zeVUvVuGkcBDuAQjsGFC6jCNdSgDgQe4Rle4c16sl6sd+tj0rpgTWf24I+szx/lnJcl</latexit>

fnr + gnr � pxnr

<latexit sha1_base64="4q07QZyi3D/ovSbNEwNynr1VYi0=">AAACA3icbZDLSsNAFIZPvNZ6i7rTzWARBLEkUtFlwY3LCvYCbQyT6aQdOpmEmYlYQsGNr+LGhSJufQl3vo3TtAtt/WHg4z/ncOb8QcKZ0o7zbS0sLi2vrBbWiusbm1vb9s5uQ8WpJLROYh7LVoAV5UzQumaa01YiKY4CTpvB4Gpcb95TqVgsbvUwoV6Ee4KFjGBtLN/eD/1MyBE6Qb0JnKIEPeTo2yWn7ORC8+BOoQRT1Xz7q9ONSRpRoQnHSrVdJ9FehqVmhNNRsZMqmmAywD3aNihwRJWX5TeM0JFxuiiMpXlCo9z9PZHhSKlhFJjOCOu+mq2Nzf9q7VSHl17GRJJqKshkUZhypGM0DgR1maRE86EBTCQzf0WkjyUm2sRWNCG4syfPQ+Os7FbK5zeVUvVuGkcBDuAQjsGFC6jCNdSgDgQe4Rle4c16sl6sd+tj0rpgTWf24I+szx/lnJcl</latexit>

fnr + gnr � pxnr

<latexit sha1_base64="4q07QZyi3D/ovSbNEwNynr1VYi0=">AAACA3icbZDLSsNAFIZPvNZ6i7rTzWARBLEkUtFlwY3LCvYCbQyT6aQdOpmEmYlYQsGNr+LGhSJufQl3vo3TtAtt/WHg4z/ncOb8QcKZ0o7zbS0sLi2vrBbWiusbm1vb9s5uQ8WpJLROYh7LVoAV5UzQumaa01YiKY4CTpvB4Gpcb95TqVgsbvUwoV6Ee4KFjGBtLN/eD/1MyBE6Qb0JnKIEPeTo2yWn7ORC8+BOoQRT1Xz7q9ONSRpRoQnHSrVdJ9FehqVmhNNRsZMqmmAywD3aNihwRJWX5TeM0JFxuiiMpXlCo9z9PZHhSKlhFJjOCOu+mq2Nzf9q7VSHl17GRJJqKshkUZhypGM0DgR1maRE86EBTCQzf0WkjyUm2sRWNCG4syfPQ+Os7FbK5zeVUvVuGkcBDuAQjsGFC6jCNdSgDgQe4Rle4c16sl6sd+tj0rpgTWf24I+szx/lnJcl</latexit>

0

<latexit sha1_base64="MA2XK4WqKJ5PomsUEi4GVmC980Q=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cW7Ae0sWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreZfWqcVmpPeRxFOEETuEcPLiGGtxBHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHhB2M2A==</latexit>

0

<latexit sha1_base64="MA2XK4WqKJ5PomsUEi4GVmC980Q=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cW7Ae0sWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreZfWqcVmpPeRxFOEETuEcPLiGGtxBHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHhB2M2A==</latexit>

0

<latexit sha1_base64="MA2XK4WqKJ5PomsUEi4GVmC980Q=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cW7Ae0sWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreZfWqcVmpPeRxFOEETuEcPLiGGtxBHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHhB2M2A==</latexit>

�nr

<latexit sha1_base64="Ec1tPSBpCgjCJWarrvYK2tIBRIo=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5JIRZcFNy4r2Ac0MUymk3boZCbMTIQagr/ixoUibv0Pd/6NkzYLbT0wcDjnHu6dEyaMKu0431ZlZXVtfaO6Wdva3tnds/cPukqkEpMOFkzIfogUYZSTjqaakX4iCYpDRnrh5Lrwew9EKir4nZ4mxI/RiNOIYqSNFNhHnjB2kc48PKZ5kHGZB3bdaTgzwGXilqQOSrQD+8sbCpzGhGvMkFID10m0nyGpKWYkr3mpIgnCEzQiA0M5ionys9n1OTw1yhBGQprHNZypvxMZipWaxqGZjJEeq0WvEP/zBqmOrvyM8iTVhOP5oihlUAtYVAGHVBKs2dQQhCU1t0I8RhJhbQqrmRLcxS8vk+55w202Lm6b9dZ9WUcVHIMTcAZccAla4Aa0QQdg8AiewSt4s56sF+vd+piPVqwycwj+wPr8AaKplhY=</latexit>

�nr

<latexit sha1_base64="Ec1tPSBpCgjCJWarrvYK2tIBRIo=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5JIRZcFNy4r2Ac0MUymk3boZCbMTIQagr/ixoUibv0Pd/6NkzYLbT0wcDjnHu6dEyaMKu0431ZlZXVtfaO6Wdva3tnds/cPukqkEpMOFkzIfogUYZSTjqaakX4iCYpDRnrh5Lrwew9EKir4nZ4mxI/RiNOIYqSNFNhHnjB2kc48PKZ5kHGZB3bdaTgzwGXilqQOSrQD+8sbCpzGhGvMkFID10m0nyGpKWYkr3mpIgnCEzQiA0M5ionys9n1OTw1yhBGQprHNZypvxMZipWaxqGZjJEeq0WvEP/zBqmOrvyM8iTVhOP5oihlUAtYVAGHVBKs2dQQhCU1t0I8RhJhbQqrmRLcxS8vk+55w202Lm6b9dZ9WUcVHIMTcAZccAla4Aa0QQdg8AiewSt4s56sF+vd+piPVqwycwj+wPr8AaKplhY=</latexit>

x?
nr

<latexit sha1_base64="wXYhg7jCFVK3hu86x1HQFeg2mrY=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPatGy2m3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3grGtzO/9ci1EbF6wEnC/YgOlQgFo2il7lM/U3ra6xqkul+uuFV3DrJKvJxUIEe9X/7qDmKWRlwhk9SYjucm6GdUo2CST0vd1PCEsjEd8o6likbc+Nn85ik5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/8zophjd+JlSSIldssShMJcGYzAIgA6E5QzmxhDIt7K2EjaimDG1MJRuCt/zyKmleVL3L6tX9ZaXWy+Mowgmcwjl4cA01uIM6NIBBAs/wCm9O6rw4787HorXg5DPH8AfO5w+3v5I5</latexit>

x?
nr

<latexit sha1_base64="wXYhg7jCFVK3hu86x1HQFeg2mrY=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPatGy2m3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3grGtzO/9ci1EbF6wEnC/YgOlQgFo2il7lM/U3ra6xqkul+uuFV3DrJKvJxUIEe9X/7qDmKWRlwhk9SYjucm6GdUo2CST0vd1PCEsjEd8o6likbc+Nn85ik5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/8zophjd+JlSSIldssShMJcGYzAIgA6E5QzmxhDIt7K2EjaimDG1MJRuCt/zyKmleVL3L6tX9ZaXWy+Mowgmcwjl4cA01uIM6NIBBAs/wCm9O6rw4787HorXg5DPH8AfO5w+3v5I5</latexit>

x?
nr

<latexit sha1_base64="wXYhg7jCFVK3hu86x1HQFeg2mrY=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPatGy2m3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3grGtzO/9ci1EbF6wEnC/YgOlQgFo2il7lM/U3ra6xqkul+uuFV3DrJKvJxUIEe9X/7qDmKWRlwhk9SYjucm6GdUo2CST0vd1PCEsjEd8o6likbc+Nn85ik5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/8zophjd+JlSSIldssShMJcGYzAIgA6E5QzmxhDIt7K2EjaimDG1MJRuCt/zyKmleVL3L6tX9ZaXWy+Mowgmcwjl4cA01uIM6NIBBAs/wCm9O6rw4787HorXg5DPH8AfO5w+3v5I5</latexit>

�nr

<latexit sha1_base64="Ec1tPSBpCgjCJWarrvYK2tIBRIo=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5JIRZcFNy4r2Ac0MUymk3boZCbMTIQagr/ixoUibv0Pd/6NkzYLbT0wcDjnHu6dEyaMKu0431ZlZXVtfaO6Wdva3tnds/cPukqkEpMOFkzIfogUYZSTjqaakX4iCYpDRnrh5Lrwew9EKir4nZ4mxI/RiNOIYqSNFNhHnjB2kc48PKZ5kHGZB3bdaTgzwGXilqQOSrQD+8sbCpzGhGvMkFID10m0nyGpKWYkr3mpIgnCEzQiA0M5ionys9n1OTw1yhBGQprHNZypvxMZipWaxqGZjJEeq0WvEP/zBqmOrvyM8iTVhOP5oihlUAtYVAGHVBKs2dQQhCU1t0I8RhJhbQqrmRLcxS8vk+55w202Lm6b9dZ9WUcVHIMTcAZccAla4Aa0QQdg8AiewSt4s56sF+vd+piPVqwycwj+wPr8AaKplhY=</latexit>

(a) (b) (c)

Fig. 3. A visualization on how the three conditions affect the optimal x⋆
nr

of fnr(xnr) + gnr(xnr)−
(
ϕr(ω

(n+1)
r) + µ⋆

n

)
· xnr , respectively.

B. OnSocMax Design and Analysis

OnSocMax is an online workload scheduling framework
built on solving P3 for each newly arrived job n in sequence.
A hat is placed on top of variables that denote the variables
involved in the framework. The procedure of OnSocMax is
captured in Algorithm 1. Specifically, upon the arrival of
each request in sequence, OnSocMax solves P3 and updates
resource usage level ωr after receiving the job information.
This ensures that an optimal service request dispatching and
workload scheduling scheme can be quickly identified when
each request arrives. The three conditions (a), (b), and (c) in
Step 6 correspond to the three conditions in Fig. 3, respec-
tively.
OnSocMax is at most polynomial because P3 is convex.

Several methods can solve this problem, e.g., intelligent op-
timization algorithm [45] and augmented Lagrangian method
(ALM). However, intelligent optimization algorithms lack the
theoretical guarantee of finding a globally optimal solution
and waste a large amount of computational resources in the
fitness evaluation. Since the objective function P3 is convex
and the constraints are linear, ALM is guaranteed to find
the globally optimal solution by using the KKT condition.
In addition, {x̂n}n∈N obtained by OnSocMax is feasible
to P1. To quantify how “good” OnSocMax is, the standard
competitive analysis framework is adopted. The definition of
competitive ratio is shown as follows.

Definition 1. For any arrival instance A of all jobs n ∈ N ,
the competitive ratio for an online algorithm is defined as

α := max
∀A

Θ⋆
P1

(A)
Θon(A)

, (21)

where Θ⋆
P1

(A) is the maximum objective value of P1, Θon(A)
is the objective function value of P1 obtained by this online
algorithm.

The competitive ratio quantifies the worst-case ratio be-
tween the optimum and the objective obtained by the online
algorithm. In addition, the smaller α indicates the online algo-
rithm is better. An online algorithm is called α-competitive if
its ratio is upper bounded by α. To guarantee that OnSocMax
is α-competitive, the requirements of the marginal cost func-
tions {ϕ̂r}r∈R are given for some α. Most importantly,
this work gives the detailed formulation of ϕ̂r(ω), which is
irrelevant with the utilities {fn}n∈N and {gnr}n∈N ,r∈R, and
only corresponding to ω, υ, ι, α, and Cr. The marginal cost

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

8

ξnr

max
{xn}n∈N

∑

n∈N
fn(xn) +

∑

n∈N

∑

r∈Rn

gnr(xnr)

Global Optimization: Allocate resource units to
jobs arrived across all time slots

min
µ,λ

∑

n∈N

∑

r∈R
ξnr(µn + λr) +

∑

n∈N
µn̺n +

∑

r∈R
λrCr

Global Optimization: Maximizing the expectation of the
Lagrangian function w.r.t. the dual variables

max
xn

(
fn(!xn) −

∑

r∈Rn

∫ ω(n)
r +xnr

ω
(n)
r

φr(u)du
)

+
∑

r∈Rn

gnr(xnr)

Local Optimization: Maximizing the pseudo-social welfare function for each new arrival job n

*Online Optimization

ξnr(p) := max
xnr∈[0,χnr]

[(
fnr(xnr) − p · xnr

)
+ gnr(xnr)

]

Dual problem

Optimize resource
allocation for each job

The optimal solution of simultaneously
optimizes the conjugate function

P3

Construct a dual solution to based on the
solution produced by OnSocMax when solving

ξnr

P3

P1 P2

P3

W̃n(!x⋆
n) ≈

∑

r∈Rn

ξnr(p
⋆)

Fig. 4. Relation of P1, P2, P3, and the conjugate. OnSocMax is designed by solving P3 online.

Algorithm 1: OnSocMax
Input: {Cr}r∈R and {gnr}n∈N ,r∈R
Output: Online solution to P1 and final utilizations

for the resource mesh
1 ∀r ∈ R : ω̂

(1)
r ← 0

2 while a new job n arrives do
3 Receive the quadruple {ϱn,Rn,χn, fn}
4 /* Solve the convex program P3 optimally */

5 for r ∈ Rn do
6 Get x̂nr with KKT conditions (18) by

x̂nr =





χnr (a)
0 (b)

(f ′
nr)

−1(ϕ̂r(ω̂
(n+1)
r) + µ̂n − βnr

Cr
) (c)

7 ω̂
(n+1)
r ← ω̂

(n)
r + x̂nr // Update utilization

8 end for
9 n← n+ 1

10 end while
11 return {x̂n}n∈N and

{
ω̂
(|N |+1)
r

}
r∈R

function ϕ̂r used in step 6-condition (c) of OnSocMax is
designed as

ϕ̂r(ω) =





ι ω ∈ [0, ϖ̂r)

υ−ι
exp(α̂)−exp(α̂

α̂−1)
e

(
α̂
Cr

ω
)
+ ι

α̂ ω ∈ [ϖ̂r, Cr]
+∞ ω ∈ (Cr,+∞),

(22)

where ϖ̂r is a resource utilization threshold and α̂ can be
obtained in the following section. To prove this result, let

υ−ι
exp(α̂)−exp(α̂

α̂−1)
e

(
α̂
Cr

ω
)
+ ι

α̂ = φ̂r(ω) first.

Theorem 1. (Extended from Theorem 4 of [46]) OnSocMax
is α-competitive for some α ≥ 1 if ∀r ∈ R, the marginal

cost function ϕ̂r is divided into three segments, including flat,
increasing, and infinite segments. It is in the form of

ϕ̂r(ω) =





ι ω ∈ [0, ϖ̂r)
φ̂r(ω) ω ∈ [ϖ̂r, Cr]
+∞ ω ∈ (Cr,+∞),

(23)

where the minimum value density across all jobs is bounded
by ι. Therefore, service requests are guaranteed to be fulfilled
whenever resource utilization remains under ϖ̂r, irrespec-
tive of the associated values. Based on [46], φ̂r is a non-
decreasing function that satisfies
{

φ̂r(ω)Cr ≤ α
∫ ω

0
ϕ̂r(u)du− ι · ω, ω ∈ [ϖ̂r, Cr]

φ̂r(ϖ̂r) = ι, φ̂r(Cr) ≥ υ.
(24)

Proposition 3. B := {A1,A2, ...} denotes the set of arrival
instances of all jobs, and ΘP2

(A) denotes a feasible objective
value of the dual problem P2 for any arrival instance A.
Hereinafter, ω̂

(|N |+1)
r is replaced to ω̂N

r for simplification.
Furthermore, B is divided into three disjoint sets:




B1 := {A | 0 ≤ ω̂N

r < ϖ̂r,∀r ∈ R}
B2 := {A | ϖ̂r ≤ ω̂N

r ≤ Cr,∀r ∈ R}
B3 := B\

(
B1 ∪ B2

)
.

(25)

B1 and B2 contain the instances whose final utilizations
of all resource units in the pool are below and above the
threshold ϖ̂r, respectively. The goal is to prove that, under
the conditions (23) and (24), ∀A ∈ B1,B2,B3 respectively,
the following relations hold:

α ·Θon(A) ≥ ΘP2(A) ≥ Θ⋆
P1

(A). (26)

In the following analysis, we drop the parentheses and A for
simplification.

Proof. A technique named instance-dependent online primal-
dual approach is adopted to prove this. The key idea is to
construct a dual solution to P2 (µn and λr) based on the
solution {x̂n}n∈N produced by OnSocMax. Specifically, µ

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

9

is constructed through KKT conditions, and λ is estimated by
marginal cost. Then, it uses this dual objective to build the
upper bound of the optimum of P1 based on weak duality.
When building the upper bound, this technique studies the
worst-case instances under different scenarios.

Case I: ∀A ∈ B1, the marginal costs experienced by all
jobs are the same according to (23), i.e., ι. In this case, each
job n is processed with the maximum parallelism rate χnr on
r ∈ Rn. Thus, Θ⋆

P1
/Θon = 1 ≤ α.

Case II: ∀A ∈ B2, we construct a feasible dual solution to
P2 as

{
µ̂n = µ⋆

n, ∀n ∈ N
λ̂r = ϕ̂r(ω̂

N
r) ∀r ∈ R, (27)

where µ⋆
n is the optimal dual solution to P3 introduced by

(18). Let p ≥ p′ ≥ 0 and denote the optimal solution that
maximizes the conjugate ξnr(p) by x̃nr given p. Then,

ξnr(p) = fnr(x̃nr) +
(
gnr(x̃nr)− p · x̃nr

)

≤ fnr(x̃nr) +
(
gnr(x̃nr)− p′ · x̃nr

)

= max
xnr

[
fnr(xnr) +

(
gnr(xnr)− p′ · xnr

)]

= ξnr(p
′), (28)

which indicates that the conjugate ξnr(p) is non-increasing
with p. The above derivation uses the fact that fnr + gnr is
non-decreasing. Based on weak duality and the non-increasing
property of the conjugate, we have

Θ⋆
P1
≤
∑

n∈N

∑

r∈R
ξnr

(
µ⋆
n + ϕ̂r

(
ω̂N
r

))
+
∑

n∈N
µ⋆
nϱn

+
∑

r∈R
ϕ̂r

(
ω̂N
r

)
Cr ▷ the right-side is ΘP2

≤
∑

n∈N

∑

r∈R
ξnr

(
µ⋆
n + ϕ̂r

(
ω̂(n+1)
r

))
+
∑

n∈N
µ⋆
nϱn

+
∑

r∈R
ϕ̂r

(
ω̂N
r

)
Cr ▷ (28)

=
∑

r∈R

(
ϕ̂r

(
ω̂N
r

)
Cr −

∑

n∈N
ϕ̂r

(
ω̂(n+1)
r

)
x̂nr

)

+
∑

n∈N

∑

r∈R

(
fnr(x̂nr) + gnr(x̂nr)

)
:= Θtmp. ▷ (16)

The first equation is built on the weak duality of P1 and P2.
The last equality holds because x̂nr simultaneously maximizes
P3 and the conjugate ξnr

(
µ⋆
n+ϕ̂r(ω̂

N
r)
)

(result of Proposition
2). Since {ϕ̂r}r∈R are non-decreasing, ∀n ∈ N , r ∈ R,

ϕ̂r

(
ω̂(n+1)
r

)
x̂nr ≥

∫ ω̂(n+1)
r

ω̂
(n)
r

ϕ̂r(u)du. (29)

(29) is illustrated in Fig. 5. It is worth noting that {ϕ̂r}r∈R
is a convex upward function, which is shown in (36) in the
following part. Further, we have

∑

n∈N
ϕ̂r

(
ω̂(n+1)
r

)
x̂nr ≥

∫ ω̂N
r

ω̂
(1)
r

ϕ̂r(u)du, (30)

where ω̂
(1)
r = 0 because of (15). It shows that the sum of the

marginal costs assigned to jobs is always greater or equal to

the cumulative marginal cost. Besides, from Fig. 3 we can find
that ξnr(µ⋆

n+ ϕ̂r(ω̂
(n+1)
r)) ≥ 0 holds for all jobs. Thus, based

on (30), we have

∑

n∈N

∑

r∈R

(
fnr(x̂nr) + gnr(x̂nr)

)
≥
∫ ω̂N

r

0

ϕ̂r(u)du. (31)

The right side of the inequality drops µ⋆
nx̂nr. Based on the

above results (30) and (31), we have

Θtmp ≤
∑

r∈R

(
ϕ̂r

(
ω̂N
r

)
Cr −

∫ ω̂N
r

0

ϕ̂r(u)du

)

+
∑

n∈N

∑

r∈R

(
fnr(x̂nr) + gnr(x̂nr)

)
▷ (30)

<
∑

r∈R

(
α− 1

) ∫ ω̂N
r

0

ϕ̂r(u)du ▷ (24) & drop ι · ω̂N
r

+
∑

n∈N

∑

r∈R

(
fnr(x̂nr) + gnr(x̂nr)

)

≤
∑

n∈N

∑

r∈R

(
fnr(x̂nr) + gnr(x̂nr)

)
α. ▷ (31)

The final expression is exactly α ·Θon. Thus, Θ⋆
P1

/Θon < α.

Fig. 5. A visualization of the inequality (29). The area of the blue rectangle
is not less than the area of the shaded region because of the non-decreasing
property of ϕ̂r .

Case III: ∀A ∈ B3, we define two disjoint sets to split the
resource pool R:

{
R1 := {r ∈ R | 0 ≤ ω̂N

r < ϖ̂r,∀r ∈ R}
R2 := {r ∈ R | ϖ̂r ≤ ω̂N

r ≤ Cr,∀r ∈ R}.
(32)

For resource unit r in different sets, the corresponding dual
variables are constructed in different ways. For resource units
in R1, their usage should not exceed the total amount actually
utilized throughout the entire dispatching process. We extend
P1 to P ′

1 by adding the following constraint:

∑

n∈N

∑

r∈R1

xnr ≤
∑

r∈R
ω̂N
r . (33)

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

10

Apparently, P ′
1 is the same as P1 for OnSocMax since (33)

is not violated by {x̂n}n∈N . The dual problem P ′
2 to P ′

1 is

P ′
2 : min

µ,λ

∑

n∈N

[∑

r∈R1

ξnr(µn + λr + δ) +
∑

r∈R2

ξnr(µn + λr)
]

+
∑

n∈N
µnϱn +

∑

r∈R
λrCr + δ

∑

r∈R
ω̂N
r

s.t. (5), (7),µ ≥ 0,λ ≥ 0, δ ≥ 0,

where δ is the dual variable corresponding to the newly added
constraint (33). Then, we construct the dual solution to P ′

2 as




λ̂r =

{
0 ∀r ∈ R1

ϕ̂r(ω
N
r) ∀r ∈ R2

δ = ι
µ̂n = µ⋆

n ∀n ∈ N .

(35)

Based on (35), we can follow a similar approach as show in
Case II to obtain that Θ⋆

P1
/Θon ≤ α. A slight difference is

that, in Case III, when applying (24) to Θ′
tmp, the result is

tightly bounded, i.e.,

Θ⋆
P1
≤
∑

r∈R2

(
ϕ̂r

(
ω̂N
r

)
Cr −

∫ ω̂N
r

0

ϕ̂r(u)du

)

+
∑

n∈N

∑

r∈R

(
fnr(x̂nr) + gnr(x̂nr)

)
+ ι

∑

r∈R
ω̂N
r ▷ (30)

<
∑

r∈R2

(
α− 1

) ∫ ω̂N
r

0

ϕ̂r(u)du ▷ (24)

+
∑

n∈N

∑

r∈R

(
fnr(x̂nr) + gnr(x̂nr)

)

≤
∑

n∈N

∑

r∈R

(
fnr(x̂nr) + gnr(x̂nr)

)
α. ▷ (31)

Theorem 1 extends the Two-point Boundary Value ODEs
for designing the marginal cost functions from standard 0-1
knapsack problem to multi-dimensional fractional problems.
Based on Theorem 1 and Gronwall’s Inequality, we have
the detailed design of {ϕ̂r}r∈R, which is irrelevant with the
utilities {fn}n∈N and {gnr}n∈N ,r∈R, as follows.

Theorem 2. ∀r ∈ Rn, if the marginal cost function ϕ̂r used
in step 6-condition (c) of OnSocMax is designed as (22).
Moreover, it is a convex upward function when ω ∈ [ϖ̂r, Cr]
because its first and second-order derivatives are greater than
zero, i.e.,





ϕ̂′
r(ω) =

υ−ι
eα−eα−1 · α

Cr
e(

α
Cr

ω) > 0

ϕ̂′′
r (ω) =

υ−ι
eα−eα−1 ·

(
α
Cr

)2
e(

α
Cr

ω) > 0.
(36)

In (22), ϖ̂r = Cr

α̂−1 , then (i) OnSocMax is α̂-competitive,
where α̂ is the solution of

α̂ =
α̂

α̂− 1
+ ln

α̂υ
ι − 1

α̂− 1
, (37)

and (ii) when α̂ ≥ ι
υ +1, the gap between α̂ and the optimal

competitive ratio when |R| = 1 is at least 2√
5+1
− ln

√
5+1
2 ≈

0.1368.

Proof. We first introduce Gronwall’s inequality as follows.
∀x ∈ [x, x], if f(x) ≤ a(x) + b(x)

∫ x

x
f(u)du, then

f(x) ≤ a(x) + b(x)

∫ x

x

a(u)
(∫ x

u

b(w)dw
)
du, (38)

where f(x) is continuous, a(x) and b(x) are integrable and
∀x ∈ [x, x], b(x) ≥ 0. The result remains valid if all the ≤
are replaced by =. Applying (38) to (24) leads to

ι ≤ φ̂r(Cr) ≤
ι

α̂
+
(ιϖ̂r(α̂− 1)

Cr
− ι

α̂

)
e

(
α̂ Cr−ϖ̂r

Cr

)
. (39)

Thus, the minimum α̂ is achieved when all inequalities in (24)

and (39) are binding, i.e., υ = ι
α̂+
(

ιϖ̂r(α̂−1)
Cr

− ι
α̂

)
e

(
α̂ Cr−ϖ̂r

Cr

)
.

This leads to the competitive ratio shown in (37) and the design
of {ϕ̂r}r∈R.

In the following, we prove the results of (ii). When R = 1,
P1 degenerates to the general one-way trading (GOT) problem.
The optimal competitive ratio is proved to be 1+ ln(υι) [46]–
[48]. With α̂ ≥ 1, υ

ι ≥ 1, taking y ≥ 1 as a substitute for
α̂− 1. Thus

α̂− 1− ln
(υ
ι

)
= y − ln

(υ
ι

)

= ln
(
y + 1− ι

υ

)
+

1

y
− ln y ▷ apply (37)

:= gap(y).

Applying ln(x) ≤ x − 1,∀x ≥ 1 to the logarithm in gap(y),
we have gap(y) ≤ y+ 1

y−ln y− ι
υ given y ≥ ι

υ . By analyzing
the upper bound of gap(y), we can easily find that when y⋆ =√

5+1
2 , its upper bound is at least 1

y⋆ − ln y⋆, which directly
leads to the result in (ii).

By the design of ϕ̂r(·), we observe that α ≥ 2 holds because
υ
ι ≥ 1. Unsuprisingly, OnSocMax has a linear complexity of
O
(
|N | · |R|

)
when {fnr}n∈N ,r∈Rn

are linear and share the
same coefficient. In this case, α̂ = 2.

C. Extending to Non-fractional Workloads

OnSocMax can be applied to jobs whose workloads are not
permitted to be fractionated. For example, each video clip in
a video transcoding task must be processed as a whole and
cannot be further fragmented. Specifically, in this case, (7) is
replaced by

xnr ∈ {0, χnr},∀n ∈ N , r ∈ Rn, (40)

where χnr = ϱn. To solve the new problem in online settings,
we can approximate the marginal cost defined in (17) with
ϕ̂r(ω̂

(n)
r + µ̂nr)x̂nr, where µ̂nr is an adjustment term used to

estimate the additional cost when task n is assigned to resource
unit r. With this substitution, the conditions (c) in step 6 of
OnSocMax is merged into condition (a) or (b), i.e.,

xnr =

{
ϱn ϕr(ω̂

(n+1)
r) + µn − βnr

Cr
< f ′

nr(χnr)

0 ϕr(ω̂
(n+1)
r) + µn − βnr

Cr
> f ′

nr(0).
(41)

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

11

This approach still follows the idea of (14) and the KKT
conditions. OnSocMax achieves the same competitive ratio
as shown in Theorem 2.

D. Implementation Concerns

In the CMEC system, jobs are processed by invoking cloud
functions across different resource units, which relies on the
multi-tenant hardware sharing technique such as VM-like iso-
lation. The approach adopted by AWS Lambda is maintaining
an active pool of computing instances that have been used to
run functions beforehand and are maintained to serve future
invocations. In addition, considering that the workloads of one
job are dispatched to different resource units across a time
window, an efficient communication mechanism is required.
A long-running VM-based rendezvous server facilitated by a
coordinator can be adopted to relay packets between cloud
functions. Based on these techniques, OnSocMax can be
easily plugged into the API gateway and triggered at the
beginning of each time slot. Thus, the process of online
workload scheduling by OnSocMax is shown in Fig 6.

Users Request queues Interface

Time slots

Load

Balancer

OnSocMax

Polices

Proportional

…

…

…

…

…

Resource pool by the

computing continuum

Users CMEC Service Providers

Fig. 6. Online workload scheduling in the computing continuum.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Simulations are performed to evaluate the effectiveness
and robustness of OnSocMax. Firstly, the performance of
OnSocMax is verified against several handcrafted bench-
marking policies on the achieved social welfare. Then, the
robustness of OnSocMax is analyzed under several different
system settings.

A. Experimental Setup

We consider a cluster with 10 computing instances in the
time horizon of 24 time slots. The processing capacity of
computing instances are generated from an i.i.d. Gaussian
N (µ = 20, σ = 2). By setting τ as 60 minutes, the
time horizon represents one day. We set the total number of
transcoding jobs as 20. The number of job arrivals in each
time slot follows a Poisson distribution with a mean of 2.03
jobs, which is independent of other time slots in this day. The
deadline of each job is calculated based on the arrival time and
the maximum service duration, where the latter is generated
from an exponential distribution with a mean of 4 time slots (2
hours). Each job’s workload size is generated from a Normal
distribution N (µ = 18, σ = 3). The parallelism bound of each
job is generated from a Normal distribution N (µ = 7, σ = 1).

The utility of job n is set as a zero-startup, non-decreasing
concave function. We study fnr in three cases, including
linear function, logarithmic function, and polynomial function.
Specifically, for each n ∈ N , r ∈ Rn,

fnr(x) =





ax linear
a log(x+ 1) log
a
√
x poly,

where the coefficient a is generated from a uniform distribu-
tion in [1, 3]. Similarly, the pricing parameter βnr in gnr(·) is
generated from the uniform distribution in [0.1, 0.5].

B. Simulation Results

This part shows the simulation results of OnSocMax and
its compared algorithms. We first show the validation of
OnSocMax’s solution as proved in Section IV-B. Then, we
show the superiority and robustness of OnSocMax. It is
compared with three handcrafted online algorithms. The first
algorithm is called Max-First, where each computing instance
always serves the job with the highest myopic social welfare,
i.e., the sum of the utility of the job and the revenue for serving
it each time slot (subject to the processing capacity of instances
and the parallelism bound of jobs). The second algorithm
is called Equal-Share, where each computing instance serves
each job with equal opportunity within capacity limits. The
third one is JSQ, where jobs are assigned to each computing
instance with the shortest queue.

0 100 200 300 400 500 600 700

Iteration count

0

500

1000

1500

V
io

la
te

 R
a
te

Fig. 7. Violate rate of OnSocMax under different iterations.

Fig. 7 shows the violate rate of OnSocMax in each iteration.
The violate rate denotes whether the online solution {x̂n}n∈N
is satisfied to constraints (4), (5), (7) of P3, where a lower
value indicates a valid solution. It is shown that OnSocMax
can always find a satisfactory solution after 600 iterations
under different workloads. Figs. 8 and 9 show the social
welfare of each job achieved by OnSocMax and Max-Fist,
respectively. The darker color indicates the higher social
welfare achieved. It is shown that the social welfare of each
job obtained by OnSocMax is more evenly distributed. On
the contrary, Max-Fist is more decentralized, i.e., the social
welfare of job 4 is 137.37, and that of job 6 is 44.49. This
resulted in some tasks receiving much longer service times,
causing inequities. The statistics also reflect this phenomenon.
The interquartile range reflects data decentralization, where a
larger value represents more decentralized data. OnSocMax
obtains an interquartile range of 14.52, which is much lower

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

12

64.63

73.50

82.51

95.39

60.68

96.35

65.64

79.30

79.99

69.17

65.85

69.09

74.22

59.99

62.35

73.15

66.88

59.45

76.74

60.06

0 20 40 60 80 100

Social Welfare

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

J
o

b
 N

u
m

b
e
r

Fig. 8. Welfare of each job achieved by OnSocMax.

108.68

65.82

56.60

137.57

87.01

44.49

120.03

84.29

103.44

75.00

96.28

90.15

59.99

76.21

99.71

104.08

85.31

84.96

92.45

90.17

0 20 40 60 80 100 120 140 160

Social Welfare

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

J
o

b
 N

u
m

b
e
r

Fig. 9. Welfare of each job achieved by Max-First.

than Max-Fist’s interquartile range of 25.96, proving the
fairness of OnSocMax.

Fig. 10 shows the social welfare achieved by four algorithms
under different service duration and parallelism bound settings.
It is shown that all the algorithms achieve higher social welfare
when the service duration and parallelism bound increases.
This is because when the computational capacity of computing
instances is sufficient, increasing the service duration and the
parallelism bound of jobs can increase job opportunities to be
fully served. In that case, the utility of each job rises, leading
to higher social welfare of the CMEC system. Despite this,
OnSocMax always performs the best among the compared
algorithms. Max-First is designed to serve higher myopic
social welfare jobs first. Thus, it achieves higher social welfare
than Equal-Share and JSQ. However, it focuses on the
optimal choice within each time slot and does not consider
tasks arriving in the future and the demand for resources from
these tasks. As a result, it may overuse certain computing
instances, reducing the overall social welfare.
JSQ obtains the lowest social welfare in linear and poly-

nomial utility functions. This is because the service rates of
the computing instances are heterogeneous, and jobs have
different deadlines and parallelism constraints. In this case,
JSQ assigns jobs to the shortest queues that may not be
suitable for processing, resulting in jobs not completed on time
or low resource utilization. In addition, JSQ only focuses on

the queue length of jobs without considering the utility of each
job, which affects the overall social welfare. It is worth noting
that JSQ achieves higher social welfare than Max-First
and Equal-Share when the service duration is low in
Fig. 10(c). The logarithmic utility function is sensitive to
tasks with smaller workloads due to its diminishing marginal
returns property. Specifically, the logarithmic utility function
can provide higher utility for those tasks that can be completed
in a shorter time. However, utility growth becomes very slow
for tasks that take a long process. For tasks with smaller work-
loads, the reduction of queuing time is crucial, and by assign-
ing tasks to the shortest queue, JSQ can minimize the queuing
time and process tasks with smaller workloads quickly. Thus,
JSQ can achieve higher utility gains by completing these tasks
rapidly, achieving higher social welfare. By solving a series
of pseudo-social welfare maximization problems, OnSocMax
considers the allocation of resources over longer time horizons
and aims to maximize the cumulative social welfare over the
entire time slot. It utilizes a marginal cost estimation technique
that dynamically adjusts the costs of different resource units
to better reflect the actual value and scarcity of resources. This
mechanism helps to avoid wastage of resources and ensures
that tasks are processed at the right time.

We verify the robustness of OnSocMax under different
settings of service capacity of computing instances and ser-
vice demand of jobs. These two variables actually tune the
congestion level, i.e., the coverage rate of service demands
from different angles. The experimental results are shown in
Figs. 11 and 12. OnSocMax performs the best for linear utility
functions. This is because the logarithmic and polynomial
functions have diminishing returns, which could increase the
fluctuation ratio υ

ι . This will cause more jobs served with
their marginal costs to fall into the second segment of ϕ̂r(ω),
further leading to a decrease in social welfare. It is shown that
OnSocMax is robust to the changes in the congestion level,
and it can always effectively schedule the online workload in
different environment settings.

VI. CONCLUSION

The computing continuum paradigm integrates edge and
cloud resources to support computationally intensive and
real-time applications. It derives cloud-assisted mobile edge
computing systems with great potential for delivering high-
bandwidth and low-latency services to numerous end users. In
these systems, it is essential to dispatch jobs to the appropriate
backend resources of edge or cloud servers. This work investi-
gates an online workload scheduling problem, considering the
system’s resource allocation to maximize social welfare. The
job we considered is continuous arriving, deadline-sensitive,
and has maximum parallelism bound. A model of the resource
pool is established to consider both the spatial and temporal re-
sources in the computing continuum and each job can only be
dispatched to the resource units that are available to it. Based
on the marginal cost estimation technique, an online algorithm
OnSocMax is designed by following the solutions of several
convex pseudo-social welfare maximization problems. It is
proved to be α-competitive for an α at least 2. Experimental

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

13

3 4 5 6 7

Service Duration

800

1000

1200

1400

1600

S
o

ci
al

 W
el

fa
re

OnSocMax Max-First Equal-Share JSQ

(a) Linear utility

3 4 5 6 7

Service Duration

800

1000

1200

1400

S
o

ci
al

 W
el

fa
re

OnSocMax Max-First Equal-Share JSQ

(b) Polynomial utility

3 4 5 6 7

Service Duration

600

800

1000

1200

S
o

ci
al

 W
el

fa
re

OnSocMax Max-First Equal-Share JSQ

(c) Logarithmic utility

3 4 5 6 7 8 9

Parallelism Bound

1200

1400

1600

1800

S
o

ci
al

 W
el

fa
re

OnSocMax Max-First Equal-Share JSQ

(d) Linear utility

3 4 5 6 7 8 9

Parallelism Bound

800

1000

1200

1400

1600

S
o

ci
al

 W
el

fa
re

OnSocMax Max-First Equal-Share JSQ

(e) Polynomial utility

3 4 5 6 7 8 9

Parallelism Bound

600

800

1000

1200

1400

1600

S
o

ci
al

 W
el

fa
re

OnSocMax Max-First Equal-Share JSQ

(f) Logarithmic utility

Fig. 10. The social welfare achieved by four algorithms under the change of service duration and parallelism bound.

4 6 8 10 12

Service Capacity

1200

1300

1400

1500

1600

1700

S
o
ci

al
 W

el
fa

re

Linear Utility Polynomial Utility Logarithmic Utility

Fig. 11. Achieved social welfare under different service capacities.

3 4 5 6 7 8 9 10 11

Service Demand

600

800

1000

1200

S
o
ci

al
 W

el
fa

re

Linear Utility

Polynomial Utility

Logarithmic Utility

Fig. 12. Achieved social welfare under different service demands.

results show that OnSocMax outperforms three handcrafted
online algorithms in maximizing social welfare. In future
work, we intend to investigate online workload scheduling
for jobs with complex workflows and communication patterns,
further enhancing the performance of OnSocMax.

REFERENCES

[1] I. Čilić, V. Jukanović, I. P. Žarko, P. Frangoudis and S. Dustdar,
“QEdgeProxy: QoS-Aware Load Balancing for IoT Services in the
Computing Continuum," 2024 IEEE International Conference on Edge
Computing and Communications, Shenzhen, China, 2024, pp. 67–73.

[2] S. Wang, J. Zhang and X. Tan, “PDLC-LIO: A Precise and Direct SLAM
System Toward Large-Scale Environments With Loop Closures," IEEE
Transactions on Intelligent Transportation Systems, vol. 25, no. 1, pp.
626–637, Jan. 2024.

[3] C. -W. Park, V. Palakonda, S. Yun, I. -M. Kim and J. -M. Kang, “OCR-
Diff: A Two-Stage Deep Learning Framework for Optical Character
Recognition Using Diffusion Model in Industrial Internet of Things,"
IEEE Internet of Things Journal, vol. 11, no. 15, pp. 25997–26000,
Aug. 2024.

[4] J. Bi, Z. Wang, H. Yuan, J. Qiao, J. Zhang and M. Zhou, “Self-
adaptive Teaching-learning-based Optimizer with Improved RBF and
Sparse Autoencoder for Complex Optimization Problems," 2023 IEEE
International Conference on Robotics and Automation (ICRA), London,
United Kingdom, 2023, pp. 7966–7972.

[5] H. Zhao, S. Deng, Z. Xiang, X. Yan, J. Yin, Schahram. D and A.
Zomaya, “Scheduling Multi-Server Jobs With Sublinear Regrets via
Online Learning," IEEE Transactions on Services Computing, vol. 17,
no. 3, pp. 1168–1180, May 2024.

[6] H. Tu, G. Zhao, H. Xu and X. Fang, “Tenant-Grained Request Schedul-
ing in Software-Defined Cloud Computing," IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 12, pp. 4654–4671, Dec.
2022.

[7] Y. Cai, J. Llorca, A. M. Tulino and A. F. Molisch, “Joint Compute-
Caching-Communication Control for Online Data-Intensive Service De-
livery," IEEE Transactions on Mobile Computing, vol. 23, no. 5, pp.
4617–4633, May 2024.

[8] M. Hamdan, E. Hassan, Abdelaziz, A. Abdallah, B. Mohammed, S.
Khan, A. Vasilakos and M. Marsono, “A Comprehensive Survey of Load
Balancing Techniques in Software-defined Network," Journal of Network
and Computer Applications, vol. 33, pp. 102856–102870, Jan. 2021.

[9] S. -H. Wu, C. -H. Ko and H. -L. Chao, “On-Demand Coordinated Spec-
trum and Resource Provisioning Under an Open C-RAN Architecture for
Dense Small Cell Networks," IEEE Transactions on Mobile Computing,
vol. 23, no. 1, pp. 673–688, Jan. 2024.

[10] S. Dustdar, V. C. Pujol and P. K. Donta, “On Distributed Computing
Continuum Systems," IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 4, pp. 4092–4105, Apr. 2023.

[11] J. Bi, Z. Wang, H. Yuan, J. Zhang and M. Zhou, “Cost-Minimized
Computation Offloading and User Association in Hybrid Cloud and Edge
Computing," IEEE Internet of Things Journal, vol. 11, no. 9, pp. 16672–
16683, May 2024.

[12] H. Liao, G. Tang, D. Guo, K. Wu and L. Luo, “EV-Assisted Computing
for Energy Cost Saving at Edge Data Centers," IEEE Transactions on
Mobile Computing, vol. 23, no. 9, pp. 9029–9041, Sept. 2024.

[13] Y. Liu, Y. Mao, Z. Liu and Y. Yang, “Deep Learning-Assisted Online
Task Offloading for Latency Minimization in Heterogeneous Mobile
Edge," IEEE Transactions on Mobile Computing, vol. 23, no. 5, pp.
4062–4075, May 2024.

[14] C. -L. Chen, C. G. Brinton and V. Aggarwal, “Latency Minimization
for Mobile Edge Computing Networks," IEEE Transactions on Mobile
Computing, vol. 22, no. 4, pp. 2233–2247, Apr. 2023.

[15] H. Chen, S. Deng, H. Zhu, H. Zhao, R. Jiang, S. Dustdar and A. Zomaya,

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

14

“Mobility-Aware Offloading and Resource Allocation for Distributed
Services Collaboration," IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 10, pp. 2428–2443, Oct. 2022.

[16] A. Mohajer, M. Sam Daliri, A. Mirzaei, A. Ziaeddini, M. Nabipour
and M. Bavaghar, “Heterogeneous Computational Resource Allocation
for NOMA: Toward Green Mobile Edge-Computing Systems," IEEE
Transactions on Services Computing, vol. 16, no. 2, pp. 1225–1238,
Mar. 2023.

[17] Y. Du, J. Li, L. Shi, T. Liu, F. Shu and Z. Han, “Two-Tier Matching
Game in Small Cell Networks for Mobile Edge Computing," IEEE
Transactions on Services Computing, vol. 15, no. 1, pp. 254–265, Jan.
2022.

[18] X. Liu and L. Ying, “Universal Scaling of Distributed Queues Under
Load Balancing in the Super-Halfin-Whitt Regime," IEEE/ACM Trans-
actions on Networking, vol. 30, no. 1, pp. 190–201, Feb. 2022.

[19] S. Bhambay and A. Mukhopadhyay, “Optimal Load Balancing in
Heterogeneous Server Systems," 2022 20th International Symposium on
Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks
(WiOpt), Torino, Italy, 2022, pp. 113-120.

[20] W. Weng, X. Zhou and R. Srikant, “Optimal Load Balancing in Bipartite
Graphs," arXiv preprint arXiv: 2008.08830, 2020.

[21] G. Wu, H. Wang, H. Zhang, Y. Shen, S. Shen and S. Yu, “Mean-
Field Game-Based Task-Offloaded Load Balance for Industrial Mobile
Edge Computing Systems Using Software-Defined Networking," IEEE
Transactions on Mobile Computing, vol. 23, no. 12, pp. 13773–13786,
Dec. 2024.

[22] S. Sthapit, J. Thompson, N. M. Robertson and J. R. Hopgood, “Com-
putational Load Balancing on the Edge in Absence of Cloud and Fog,"
IEEE Transactions on Mobile Computing, vol. 18, no. 7, pp. 1499–1512,
Jul. 2019.

[23] G. Aumala, E. Boza, L. Ortiz-Avilés, G. Totoy and C. Abad, “Beyond
Load Balancing: Package-Aware Scheduling for Serverless Platforms,"
2019 19th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), Larnaca, Cyprus, 2019, pp. 282–291.

[24] Z. Xiang, Y. Zheng, D. Wang, J. Taheri, Z. Zheng and M. Guo,
“Cost-Effective and Robust Service Provisioning in Multi-Access Edge
Computing," IEEE Transactions on Parallel and Distributed Systems,
vol. 35, no. 10, pp. 1765–1779, Oct. 2024.

[25] Z. Zheng and N. B. Shroff, “Online multi-resource allocation for
deadline sensitive jobs with partial values in the cloud," The 35th
Annual IEEE International Conference on Computer Communications
(INFOCOM), San Francisco, CA, USA, 2016, pp. 1–9.

[26] S. Duan, F. Fyu, H. Wu, W. Chen, H. Lu, Z. Dong and X. Shen, “MOTO:
Mobility-Aware Online Task Offloading With Adaptive Load Balancing
in Small-Cell MEC," IEEE Transactions on Mobile Computing, vol. 23,
no. 1, pp. 645–659, Jan. 2024.

[27] V. Bilò, G. Monaco, L. Moscardelli and C. Vinci, “Nash Social Welfare
in Selfish and Online Load Balancing" ACM Transactions on Economics
and Computation, vol. 10, no. 2, pp. 1–41, Oct. 2022.

[28] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar and A. Y. Zomaya,
“Edge Intelligence: The Confluence of Edge Computing and Artificial
Intelligence," IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7457–
7469, Aug. 2020.

[29] H. Yuan, J. Bi, Z. Wang, J. Yang, and Jia Zhang, “Partial and Cost-
minimized Computation Offloading in Hybrid Edge and Cloud Systems,"
Expert Systems with Applications, vol. 250, pp. 1–13, Sept. 2024.

[30] H. Yao, R. Ni, H. Amirpour, C. Timmerer and Y. Zhao, “Detection and
Localization of Video Transcoding From AVC to HEVC Based on Deep
Representations of Decoded Frames and PU Maps," IEEE Transactions
on Multimedia, vol. 25, pp. 5014–5029, Jun. 2023.

[31] D. P. Bertsekas, “Nonlinear Programming," Journal of the Operational
Research Society, vol. 48, no. 3, pp. 334–334, Jun. 1997.

[32] X. Wu and J. Lu, “Fenchel Dual Gradient Methods for Distributed
Convex Optimization Over Time-Varying Networks," IEEE Transactions
on Automatic Control, vol. 64, no. 11, pp. 4629–4636, Nov. 2019.

[33] T. Yu, R. Zhong, V. Janjic, P. Petoumenos, J. Zhai, H. Leather and
J. Thomson, “Collaborative Heterogeneity-Aware OS Scheduler for
Asymmetric Multicore Processors," IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 5, pp. 1224–1237, May 2021.

[34] J. H. M. Korndörfer, A. Eleliemy, A. Mohammed and F. M. Ciorba,
“LB4OMP: A Dynamic Load Balancing Library for Multithreaded
Applications," IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 4, pp. 830–841, Apr. 2022.

[35] X. Fu and E. Modiano, “Learning-NUM: Network Utility Maximization
With Unknown Utility Functions and Queueing Delay," IEEE/ACM
Transactions on Networking, vol. 30, no. 6, pp. 2788–2803, Dec. 2022.

[36] C. Zhang, H. Tan, H. HUang, Z. Han, S. Jiang, G. Li and X. Li, “Online
Approximation Scheme for Scheduling Heterogeneous Utility Jobs in
Edge Computing," IEEE/ACM Transactions on Networking, vol. 31, no.
1, pp. 352–365, Feb. 2023.

[37] X. Yao, X. Yang, Q. Li, C. Qi, X. Kong and X. Li, “UMIM: Utility-
Maximization Incentive Mechanism for Mobile Crowd Sensing," IEEE
Transactions on Mobile Computing, vol. 23, no. 5, pp. 6334–6346, May
2024.

[38] Google Cloud, “Pricing details for the Transcoder API,"
https://cloud.google.com/transcoder/pricing, 2024.

[39] Amazon Web Services, Inc, “Amazon Elastic Transcoder Pricing,"
https://aws.amazon.com/elastictranscoder/pricing/, 2024.

[40] Alibaba Cloud, “Alibaba Cloud Media Processing,"
https://www.alibabacloud.com/product/mts/pricing, 2024.

[41] Tencent Cloud, “Media Processing Service,"
https://cloud.tencent.com/product/mps/pricing, 2024.

[42] P. Cong, G. Xu, J. Zhou, M. Chen, T. Wei and M. Qiu, “Personality-
and Value-Aware Scheduling of User Requests in Cloud for Profit
Maximization," IEEE Transactions on Cloud Computing, vol. 10, no.
3, pp. 1991–2004, Jul. 2022.

[43] B. Sun, and A. Zeynali,T. Li, M. Hajiesmaili, A. Wierman and D. Tsang,
“Competitive Algorithms for the Online Multiple Knapsack Problem
with Application to Electric Vehicle Charging," Proc. ACM Meas. Anal.
Comput. Syst., Dec. 2020.

[44] Q. Wang, S. Guo, J. Liu, C. Pan and L. Yang, “Profit Maximization In-
centive Mechanism for Resource Providers in Mobile Edge Computing,"
IEEE Transactions on Services Computing, vol. 15, no. 1, pp. 138–149,
Jan. 2022.

[45] J. Bi, Z. Wang, H. Yuan, J. Zhang and M. Zhou, “Self-adaptive Teaching-
learning-based Optimizer with Improved RBF and Sparse Autoencoder
for High-dimensional Problems," Information Sciences, vol. 630, pp.
463–481, Jun. 2023.

[46] X. Tan, B. Sun, A. Leon-Garcia, and Y. Wu and T. Danny, “Mechanism
Design for Online Resource Allocation: A Unified Approach," ACM on
Measurement and Analysis of Computing Systems, pp. 1–46, Jun. 2020.

[47] R. El-Yaniv, A. Fiat, R. Karp and G. Turpin, “Optimal Search and One-
way Trading Online Algorithms," Algorithmica, vol. 30, no. 1, pp. 101–
139, May 2001.

[48] X. Tan, A. Leon-Garcia, Y. Wu and D. H. K. Tsang, “Online Combina-
torial Auctions for Resource Allocation With Supply Costs and Capacity
Limits," IEEE Journal on Selected Areas in Communications, vol. 38,
no. 4, pp. 655–668, Apr. 2020.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3570845

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 15,2025 at 01:45:47 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Works
	Resource and Job Scheduling in Computing Continuum
	Online Workload Scheduling with Load Balance

	System Model and Problem Formulation
	Spatio-Temporal Resource Pool
	Utility and Revenue Functions
	Online Social Welfare Maximization

	Algorithm Design with Theoretical Analysis
	Pseudo-Social Welfare Function
	OnSocMax Design and Analysis
	Extending to Non-fractional Workloads
	Implementation Concerns

	Experimental Results and Discussion
	Experimental Setup
	Simulation Results

	Conclusion
	References

