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Abstract—Optimization algorithms (OAs) frequently address
complex industrial automation and system scheduling design
problems. However, when handling high-dimensional complex
problems, these algorithms often struggle to explore the entire
solution space due to their reliance on extensive computational re-
sources and significant time costs. Additionally, they are prone to
becoming trapped in local optima when solving high-dimensional
problems. To address these challenges, this work proposes a
novel OA named Self-adaptive Dragonfly Optimizer with ran-
dom Forest and kernel-Principal component analysis (SDOFP).
The Self-adaptive Dragonfly Optimizer (SDO) is designed to
dynamically adjust parameters for adaptive exploration of the
decision space. Kernel-Principal Component Analysis (K-PCA) is
a dimensionality reduction method, turning the high-dimensional
search space into a lower-dimension one. It can effectively guide
the population toward the global optimum. Random Forest (RF)
is utilized as a surrogate model to balance training time and
prediction accuracy, conserving computational resources and
enhancing overall performance. The performance of SDOFP
is evaluated by comparing it with several typical peers across
eight high-dimensional benchmark functions. Further validation
is conducted by applying SDOFP to a real-world flexible job shop
scheduling problem, demonstrating its practical applicability.

Index Terms—Optimization algorithms, surrogate model, prin-
cipal component analysis, high-dimensional optimization.

I. INTRODUCTION

In contemporary engineering applications, optimization al-

gorithms (OAs) are extensively used in design optimization,

resource allocation, and scheduling. They are crucial in data

mining, big data analytics, information security, and cloud

computing [1]. Many practical problems involve a large
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China under Grants 62473014 and 62173013, the Beijing Natural Science
Foundation under Grants L233005 and 4232049, and in part by Beijing Uni-
versity of Technology and Huawei “Intelligent Foundation” Industry Educa-
tion Integration Collaborative Education Base Project (No. 40310790202101).

number of decision variables, categorizing them as high-

dimensional problems [2]. The emergence of high-dimensional

problems poses challenges to traditional OAs because they

cannot fully explore decision spaces. This challenge is partic-

ularly pronounced in engineering scheduling and financial in-

vestment, where high-dimensional problems necessitate costly

and time-consuming function evaluations [3], [4].

Various research approaches are proposed to tackle practical

high-dimensional problems, broadly categorized into three

main types [5]. Firstly, integrating surrogate models within

OAs plays a pivotal role [6]. Surrogate models simplify com-

plex objective functions, significantly reducing computational

costs and time [7], [8]. However, constructing and maintaining

intricate surrogate models demands substantial computational

resources and time investment. Additionally, selecting appro-

priate surrogate models and mitigating the risk of overfitting

are important because inaccurate surrogate models directly

impact optimization results.

The second category of methods involves dimensionality

reduction. Through feature selection and feature extraction,

dimensionality reduction helps reduce the number of deci-

sion variables, simplifying models’ computational and inter-

pretative processes [9], [10]. However, selecting appropriate

dimensionality reduction methods is crucial, as it may lead

to the loss of important data information during the reduction

process, especially when dealing with large-scale datasets. The

third category of methods focuses on improving OAs. By

incorporating additional optimization strategies and adaptive

parameter adjustments, the algorithm’s search efficiency and

convergence speed are improved [11], [12].

Based on the above analysis, this work proposes a

novel optimization algorithm based on Self-adaptive Dragon-

fly Optimizer (SDO), integrating Random Forest (RF) and
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Kernel-Principal Component Analysis (K-PCA) to address

high-dimensional problems, named Self-adaptive Dragonfly

Optimizer with random Forest and kernel-PCA (SDOFP). It is

specifically designed for high-dimensional optimization tasks,

utilizing RF and K-PCA as surrogate models and dimen-

sionality reduction tools, respectively [13]. SDOFP dynam-

ically adjusts parameters during algorithm iterations to find

the global optimal and balance exploration and exploitation

abilities, effectively exploring solution spaces. The integration

of RF as a surrogate model learns complex nonlinear rela-

tionships within the data, balancing prediction accuracy and

training time to reduce the computational costs of SDOFP.

Additionally, K-PCA effectively reduces the dimensionality

of high-dimensional space, further enhancing the efficiency

and reliability of SDOFP in handling large-scale complex

problems. Finally, a novel framework is proposed to inte-

grate dimensionality reduction and surrogate models to tackle

high-dimensional problems. Experimental validations on var-

ious unimodal and multimodal high-dimensional benchmark

functions and applications in flexible workshop scheduling

problems demonstrate the superior performance of SDOFP

compared to its typical peers.

II. PROPOSED FRAMEWORK

A. Self-adaptive Dragonfly Optimizer

SDO is proposed as a base optimizer for SDOFP. In SDOFP,

gaussian process models (GPM) are employed for initializing

the positions of dragonflies:

X={xi}ni=1, xi∼U(lb, ub) (1)

Y={yi}ni=1, yi=f(xi) (2)

where n is the population size, xi is the sample i. X represents

n samples generated within a given range, and each sample has

d dimensions. lb and ub denote the minimum and maximum

values within the range, respectively [14]. Y denotes the

objective function values computed for each sample point and

forms the training set. A radial basis function (RBF) kernel

defines GPM with a small noise level q. The generated training

set is used to train GPM.

In each iteration, the position of each dragonfly is computed.

Each dragonfly considers interactions with other dragonflies.

To guide dragonflies move toward the global optimum while

maintaining population diversity, multiple attractiveness func-

tions (β1, β2, β3) are designed to control the mutual attraction

among dragonflies, i.e.,

β1 : k=(f1, f2, β0, γ)=β0·e−γ·d(f1,f2)2 (3)

β2 : k=(f1, f2, β0, γ)=β0·e−2γ·d(f1,f2)2 (4)

β3 : k=(f1, f2, β0, γ)=β0·e−0.5γ·d(f1,f2)2 (5)

where k denotes the attractiveness value. β0 is the initial

attractiveness coefficient and γ is the attractiveness decay

coefficient. f1 and f2 are the positions of two dragonflies,

and d(f1, f2) is the distance between them, calculated by

Euclidean distance.

β1 is the standard attractiveness function, where attractive-

ness decays exponentially with the square of the distance. β2
is the fast-decaying attractiveness function, reducing mutual

attraction between dragonflies at longer distances. β3 is the

slow-decaying attractiveness function, leading to stronger mu-

tual attraction between dragonflies even at longer distances.

After selecting the attractiveness function for each iteration,

the positions of the dragonflies are updated. Dragonfly f1
updates its position after being attracted by dragonfly f2, and

the new positions of dragonflies xwm are updated as:

xwm=f1+k·(f2−f1)+α(r−0.5) (6)

xwm /∈tl (7)

where α is the step size, r is a random value within [0,1],

and α(r−0.5) introduces randomness to simulate the random

flight behavior of dragonflies in nature. tl is a list that contains

positions to which the dragonflies are forbidden to move.

It helps prevent the algorithm from getting trapped in local

optima or revisiting already explored positions during the

optimization process.

To enhance population diversity, SDO introduces the adap-

tive differential evolution (ADE) algorithm for mutation. This

process simulates the mutation mechanisms in biological evo-

lution to explore the solution space, guided by fitness evalua-

tion strategies, thereby improving global search capabilities. It

introduces adaptivity by dynamically adjusting the differential

mutation factor (F ) and crossover probability (CR) [15],

enhancing optimization stability to prevent the algorithm from

getting trapped in local optima. Specifically, three individuals

from the current population are randomly selected as the base

individuals for the mutation operation. These three individuals

are Pa, Pb, and Pc, and Pa, Pb, Pc �=ts. ts represents the

index of the target individual. Next, a mutant individual vp
is generated using differential mutation, i.e.,

vp=Pa+F ·(Pb−Pc) (8)

To ensure vp remains within the search space, truncation

(clip) is applied:

vp=clip(vp,−3, 3) p=1, 2, . . . , d (9)

Finally, CR is adopted to perform crossover between the

mutant individual vp and the target individual xp, generating

a trial individual up, i.e.,

up=

{
vp if l<CR

xp otherwise
(10)

where l is a random value in [0,1]. (10) states that for each

dimension p, if a random number is less than CR, up takes

the value from the mutant vector vp; otherwise, up takes the

value from the target individual xp at that dimension.

In addition, Grey Wolf Optimizer (GWO) [16] is intro-

duced into SDO to enhance the population diversity and the

algorithm’s global search capability. It is particularly effective
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for complex high-dimensional optimization problems. The

population is updated as:

xwm=
3Xα,m+Xβ,m+Xδ,m

3
(11)

where Xα,m, Xβ,m, Xδ,m are positions of the three best in-

dividuals in the dimension m, respectively. α, β, δ are the

dynamically adjusted parameters. They are updated in each

generation based on the iteration count.

B. Kernel Principal Component Analysis

K-PCA is an extension of traditional PCA that lever-

ages kernel methods for nonlinear dimensionality reduction

[17], [18]. It is particularly advantageous for handling com-

plex, high-dimensional datasets in optimization problems. By

projecting the original high-dimensional data into a lower-

dimensional space, K-PCA captures essential structures and

patterns within the data. It is adopted to reduce the dimen-

sionality of the input data before training the surrogate model

to reduce its training time. Specifically, after the initial phase

in the optimization process, K-PCA is used to compress the

dimensionality of all individuals generated by OA before train-

ing the surrogate model. It does not require separate training

because K-PCA is an unsupervised method. Thus, it enhances

the algorithm’s efficiency. In that case, surrogate models can

be trained in a lower-dimensional space to accelerate their

training speed.

C. Random Forest

RF is adopted as the surrogate model to enhance predic-

tion accuracy and stability by combining predictions from

multiple decision trees [19]–[21]. It achieves model diver-

sity by independently constructing multiple decision trees on

different subsets of the training data. Each tree randomly

selects a subset of features for node splitting, generating a

collection of trees with diverse structures that mitigate the risk

of overfitting compared to a single model. During training,

the model sequentially splits the input space by selecting

features and splitting points to minimize the variance of the

target variable until the predefined stopping criteria are met.

This splitting process enables each tree to capture complex

relationships between input variables and target values. In

the prediction phase, each decision tree in RF independently

predicts input data and the final prediction is the average of all

tree predictions. By integrating results from multiple models,

RF reliably approximates complex equations, reducing bias

and variance.

RF excels at handling high-dimensional data. In SDOFP,

this capability is crucial as it adapts quickly to optimization

process changes and effectively manages the complexity of

high-dimensional data. These characteristics make RF an ideal

surrogate model, effectively approximating complex optimiza-

tion problems.

D. SDO with RF and K-PCA

At the initial stage of SDOFP, the population is first initial-

ized via GPM. Subsequently, it utilizes multiple attractiveness

functions for iterative optimization, continuously adjusting the

positions and brightness of dragonflies. The introduction of

ADE enhances population diversity, effectively exploring and

expanding the problem’s solution space. GWO’s hunting strat-

egy enhances algorithm diversity and global search capability.

Then, SDOFP continuously collects data samples from each

generation to train RF. Once predefined conditions are met,

these data samples undergo processing in the K-PCA, which

selects the most significant features in the decision space.

This reduces data dimensionality and complexity, enabling

RF to learn and accurately fit complex optimization patterns.

This preprocessing alleviates the computational burden of

subsequent optimization iterations and significantly reduces

the training cost of the surrogate model itself. This ensures

sufficient and representative data volume when transferring

dimensionally reduced data to RF training. Thus, RF can learn

and generalize intrinsic optimization strategies effectively. In

subsequent optimization iterations, SDOFP adopts a surrogate-

assisted computation approach, It integrates K-PCA with RF

to enhance the algorithm’s computational efficiency and global

search capability. This provides a feasible approach to solving

high-dimensional optimization problems. Fig. 1 shows the

framework of SDOFP, and Algorithm 1 shows its pseudocode.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Benchmark Functions and Comparative Experiments

SDOFP is compared with four typical OAs, including ant

colony algorithm (ACA) [22], original dragonfly algorithm

(ODA), artificial bee colony algorithm (ABCA) [23], [24],

and particle swarm optimization (PSO) [25]. In addition, six

different benchmark functions are selected, including three

unimodal and three multimodal functions. The details of

benchmark functions are shown in Table I. Each benchmark

function is executed independently 20 times, and the optimal

solution’s average value and standard deviation are recorded.

For SDOFP and the other four OAs, the population size

is set to 100, maximum iterations are set to 1000, and the

dimension of each individual is set to 100. For SDOFP, α is

set to 0.5, β0 and γ are both set to 1.0. For RF, 100 decision

trees are used with a maximum depth of 10, controlling tree

growth depth. Minimum samples per leaf are set to 2 and 1,

respectively, with a sample ratio of 0.8 per tree. For K-PCA,

50 principal components are selected after dimensionality

reduction. All these algorithms are implemented on a computer

with an 11th Gen Intel(R) Core(TM) i7CPU 11800H operating

at 2.30 GHz and 16 GB RAM.

B. Experimental Results

Table II presents the statistical results of benchmark func-

tions after 1000 iterations, and Fig. 2 shows the corresponding

convergence curves. It is shown in Fig. 2 that SDOFP achieves

convergence in fewer iterations among all five algorithms.

During the search process, RF assists SDOFP in exploring the

solution space more effectively, improving convergence speed
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Fig. 1. Framework of SDOFP

TABLE I
BENCHMARK FUNCTIONS

Functions Range

F1(x)=
n∑

i=1
x2
i [-100,100]

F2(x)=
n∑

i=1

(|xi|
)
+

n∏
i=1

(|xi|
)

[-10,10]

F3(x)=
n∑

i=1

⎛
⎝1000

i−1
n−1

⎞
⎠ x2

i [-100,100]

F4(x)= =
∑n

i=1

(
x2
i−10 cos(2πxi)+10

)
[-5.12,5.12]

F5(x)= 1
4000

n∑
i=1

x2
i−

n∏
i=1

cos

(
xi√
i

)
+1 [-600,600]

F6(x)=−20 · exp

(
−0.2 ·

√
1
n

n∑
i=1

x2
i

)
− exp

(
1
n

n∑
i=1

cos(2πxi)

)
+20+e [-32,32]

and quality [26]. K-PCA significantly improves data separa-

bility through dimensionality reduction, enhancing the per-

formance of SDOFP. SDOFP comprehensively improves the

capability and efficiency in solving complex high-dimensional

optimization problems [27].

For unimodal problems, Figs. 2(a)-(c) show the F1, F2,

and F3 results after 1000 iterations. They demonstrate that

SDOFP achieves the fastest convergence speed and optimal

convergence performance. For multimodal problems, F4, F5,

Algorithm 1 SDOFP

Input: Maximum iterations of SDO for K-PCA (t̂1), maximum
number of iterations in SDOFP (t̂2), dataset before dimensionality
reduction by K-PCA (D1), dataset to train RF (D2), dataset to
evaluate RF performance (D3)
Output: xbest, fbest

1: Initialize X , D1=∅, D2=∅, and D3=∅

2: while t<t̂1 do
3: X ′ = SDO(X)
4: Calculate the fitness value f(X ′) of each individual in X ′

5: D1=D1∪(f(X ′), X ′)
6: Select X ′ as X for the next generation
7: t=t+1
8: end while
9: if t=t̂1 then

10: D2=D2∪(K-PCA(D1(X)), D1(f(X)))
11: Initialize an empty list of decision trees tl
12: Initialize number of trees n
13: for i = 1 to n do
14: Sample a bootstrap dataset Dboot from D2

15: Train a decision tree Ti on Dboot using a Gini-index
16: Add Ti to tl
17: end for
18: Output the decision trees tl and a trained RF model
19: end if
20: while t≤t̂2 do
21: Generate new positions X
22: XK−PCA=K-PCA(X)
23: X ′ = SDO(XK−PCA)
24: Calculate the fitness value f(X ′) of each individual in X ′

25: D3=D3∪(f(X ′), X ′)
26: XRF=RF(XK−PCA)
27: Predict the fitness value f(X ′

RF ) of each individual in XRF

28: Select X ′ as X for the next generation
29: t = t+ 1
30: Update fbest and xbest

31: end while
32: Return fbest and xbest

and F6 results are shown in Figs. 2(d)-(f). They indicate

that SDOFP finds better solutions than its peers, exhibiting

stronger search capabilities and convergence effects than the

other four OAs. Table II shows that SDOFP achieves superior

average results across six benchmark functions. Moreover,

SDOFP exhibits minimal standard deviations, indicating stable

performance and robustness.

C. Real-world Flexible Job Shop Scheduling Problem

SDOFP is further applied to address a practical Flexible

Job Shop Scheduling Problem (FJSP) [28] to demonstrate its

performance. This problem is crucial in production scheduling

because FJSP allows flexible processing routes. Each operation

can be processed on multiple machines with varying capabil-

ities, resulting in different processing times. The completion

time is the optimization objective function [29]. To enhance the

performance of SDOFP, the first half of the population is al-

located to represent different machine assignment schemes for

operations. In addition, the second half describes the sequence

of operations. We evaluate the algorithm’s effectiveness in

solving FJSP through 1000 iterations. SDOFP is compared

with ABCA, ACA, PSO, and ODA on this problem. Fig. 3
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Fig. 2. Results of benchmark functions

TABLE II
RESULTS OF BENCHMARK FUNCTIONS

Functions Algorithms Mean Std

F1 SDOFP 1.1876×10−204 4.2173×10−205

PSO 3.5781×10+01 6.0200×10+00

ABCA 1.2966×10+01 2.5239×10+00

ACA 4.6151×10+02 1.5970×10+01

ODA 3.8160×10+02 7.2558×10+01

F2 SDOFP 1.7589×10−123 6.0788×10−124

PSO 4.8301×10+01 4.2144×10+00

ABCA 2.7114×10+01 2.5304×10+00

ACA 1.8234×10+02 3.6345×10+00

ODA 3.8210×10+08 5.4171×10+07

F3 SDOFP 1.9006×10−204 5.4692×10−205

PSO 2.7374×10+03 5.4945×10+02

ABCA 1.0308×10+03 1.8204×10+02

ACA 3.4573×10+04 2.9206×10+03

ODA 2.6643×10+04 5.1884×10+03

F4 SDOFP 1.4655×10−14 2.7687×10−15

PSO 4.0384×10+00 2.1122×10−01

ABCA 2.8429×10+00 1.2419×10−01

ACA 8.6660×10+00 1.4606×10−01

ODA 8.7542×10+00 1.0619×10−01

F5 SDOFP 2.7756×10−16 5.5511×10−17

PSO 4.5854×10−01 9.5290×10−02

ABCA 1.9060×10−01 3.5874×10−02

ACA 1.1151×10+00 4.9169×10−03

ODA 1.0963×10+00 1.0113×10−01

F6 SDOFP 1.8208×10−14 3.5527×10−15

PSO 4.0421×10+00 1.8547×10−01

ABCA 2.8481×10+00 1.3287×10−01

ACA 8.6461×10+00 1.6632×10−01

ODA 8.7554×10+00 1.1134×10−01

shows the iteration curve of each algorithm. It is shown that

as the iteration progresses, the completion time of SDOFP

gradually decreases, reaching the optimal value. Compared

to other OAs, SDOFP achieves the shortest completion time,

indicating its effectiveness. A Gantt chart is presented to

illustrate the optimization results. It is shown in Fig. 4 that

multiple tasks are scheduled on four machines, with different
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Fig. 3. Result of real-world problem
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Fig. 4. Gantt of real-world problem

colors representing different tasks. Tasks on each machine are

arranged chronologically to ensure that each machine executes

only one task at each time point while minimizing idle time

between tasks to maximize overall efficiency. As a result, it is

proved that SDOFP can be applied to real-world problems.
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IV. CONCLUSIONS

In modern industrial engineering, high-dimensional prob-

lems have extensive applicability and significance in pro-

duction line optimization, resource allocation, and scheduling

design. However, solving high-dimensional problems is con-

strained by the vast solution space and the high computational

cost of function evaluations. Traditional optimization algo-

rithms often cannot fully explore all possible solutions, leading

to a trap in local optima. This study proposes a Self-adaptive

Dragonfly Optimizer with random Forest and kernel-PCA

(SDOFP). First, a self-adaptive dragonfly optimizer (SDO) is

designed, and kernel-principal component analysis (K-PCA)

is introduced for data dimensionality reduction. Meanwhile,

random forest (RF) is introduced as a surrogate model to

accelerate the optimization process and reduce computational

costs. It can better balance exploration and exploitation in

high-dimensional search spaces. SDOFP is compared with

four state-of-the-art algorithms on six benchmark functions.

Experimental results show that SDOFP achieves the best

search performance. In addition, SDOFP is applied to a real-

world job shop scheduling problem. The results show that

SDOFP can generate solutions superior to its peers. Future

work will explore other advanced surrogate models to enhance

its performance further.
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