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Abstract—Nowadays, the applications of water quality pre-
diction in the field of regional water environment management
are increasing. It refers to predicting the elemental values of the
water environment in the future based on past monitoring data,
which is essential to realize the real-time evaluation of water
quality and dynamic control of pollution sources. However, the
water environment indicators are affected by various elements,
which have a large volatility and non-linear characteristics. In
addition, most of the existing water quality predictions focus on
single-step predictive modeling of single elements of the water
environment and lack multi-step predictive analysis of multi-
factor data of the water environment. In this paper, a novel long-
term prediction model based on genetic simulated annealing-
based particle swarm optimization (GSPSO) with seasonal-
trend decomposition using LOESS (STL) is proposed and
named GSPSO-STL-Autoformer (GS-Autoformer). It realizes
the multi-factor and long-term prediction of water quality
time series data. Firstly, the Autoformer’s hyperparameters are
optimized by the GSPSO to improve its convergence speed.
Secondly, the multi-factor features are decomposed by the STL
to make the model more focused on learning feature information
of each component. Finally, the long-term prediction is realized
by the Autoformer. Comparative experiments with state-of-the-
art peers show that the GS-Autoformer can effectively improve
the accuracy of multi-factor and long-term predictions.

Index Terms—Time series forecasting, seasonal-trend decom-
position, intelligent optimization algorithms.

I. INTRODUCTION

In recent years, the use of water quality prediction tech-
nology [1]–[3] has significantly increased in regional water
environment management [4]–[6]. It predicts future elemen-
tal values of the water environment using past monitoring
data [7], which is significant for real-time water quality
assessment. However, the existing water quality prediction
models still face some problems due to the great volatility
and nonlinearity [8] of the changes in water quality indices.
To be specific, the water environment multi-factor data is
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dynamically changed over time without specific regularity
and stability. Since traditional machine learning [9] models,
e.g., autoregressive integrated moving average model cannot
effectively reflect the non-linear distribution of short-term,
high-frequency, and multi-factor data. In this case, there is
still a lack of comprehensive methodological research on the
change of short-term, high-frequency, and multi-factor indi-
cators of the water environment. Furthermore, it is essential
to extend the prediction time frame in practical applications
[10]. Traditional end-to-end models [11] for dealing with
sequence problems compress the data information when en-
coding long sequence data. However, with the emergence of
long sequences, the loss of sequence information by encoding
becomes gradually larger. Therefore, strong prediction ability
and high computational efficiency of the model are required
for realizing long-term water quality prediction.

Deep learning water quality prediction models and models
based on multiple attention mechanisms provide solutions
to the above problems. For instance, the long-short term
memory model (LSTM) [12] can be adopted to efficiently
extract water quality information based on periodic and non-
linear changes [13]. Moreover, the Autoformer [14] can be
applied in long-term temporal prediction, which is capable of
predicting a longer-term future based on valid information.
However, there are still three issues that require attention.
The first problem is that traditional water quality prediction
methods are not comprehensive enough to realize real-time
prediction of multi-factor data [15]. Secondly, most of the ex-
isting water quality predictions focus on predictive modeling
of a single element of the water environment and lack predic-
tive analysis of multi-factor data. Finally, due to the stringent
time requirements for water quality predictions, most existing
works focus on analyzing the single-step prediction effect
of single-element water quality. They do not consider the
construction of multi-step and long-term prediction models
for multi-factor data. Therefore, how to effectively utilize
water quality time series data to achieve real-time, multi-
step, and long-term prediction of multi-factor data on water
quality is imperative.

Motivated by the aforementioned analysis, this work de-
signs a multi-factor and long-term prediction model based on
genetic simulated annealing-based particle swarm optimiza-
tion (GSPSO) [16] and seasonal-trend decomposition using
LOESS (STL) [17]. GSPSO is first adopted to optimize the
hyperparameters of the prediction model. It reduces the pro-
cess of manual parameter setting and avoids parameter setting
deviation on prediction accuracy, which can also improve the
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convergence speed of the prediction model. Then, the STL is
adopted to learn the periodicity and volatility characteristics
among the long-term water quality data. Finally, the long-
term prediction model is constructed and named GSPSO-
STL-Autoformer (GS-Autoformer). Moreover, Autoformer
reduces the complexity of the long-term prediction through
an autocorrelation attention mechanism with a multi-head
structure. Finally, the GS-Autoformer realizes efficient and
accurate water quality prediction over a long period.

II. PROPOSED FRAMEWORK

A. Genetic Simulated annealing-based Particle Swarm Opti-
mization

The multi-factor and long-term prediction model requires
optimization of several hyperparameters, e.g., the number of
hidden layers, input length, and dropout rate. To avoid the
impact of manually setting parameters on the prediction accu-
racy, an optimization algorithm named GSPSO is employed
to choose the model’s hyperparameters.

GSPSO integrates genetic learning and simulated an-
nealing (SA) [18] into particle swarm optimization (PSO)
[19] to balance its exploration and exploitation ability. In
GSPSO, each particle is guided under its historical and the
global best particle to update its position and velocity. It
is assumed that the velocity of particle i is denoted as
Vi=(νi,1, νi,2, ...., νi,D), where D represents the dimension
of each particle. The position of particle i is denoted as
Li = (li,1, li,2, ...., li,D). Pi = (pi,1, pi,2, ...., pi,D) denotes
the historical optimum of particle i and G = (g1, g2, ...., gD)
denotes the global optimum of the population. In addition,
vi,d and li,d are velocity and position of dimension d for
particle i, respectively. Specifically, they are updated as:

νi.d = b̂.νi.d+c1 ·r1.d ·(pi.d − li.d)+c2 ·r2.d ·(gd − li.d) (1)

li,d=li,d+vi,d (2)

b̂ = bmax −
bmax − bmin

amax
a (3)

where b̂ denotes the inertia weight. The acceleration coeffi-
cients c1 and c2 establish the relative importance of Pi and G,
respectively. r1,d and r2,d are random values in [0,1]. bmax

and bmin are the maximum and minimum values of b̂. a and
amax denote the current and maximum number of iterations.

Particle i of the population learns from its historical
optimum Pi and the global optimum G. However, if both
converge to the same local optimum, the algorithm may
cease exploring further, leading to premature convergence.
As a result, for each particle i, a combination sample
Ei = (ei,1, ei,2, ...., ei,D) is formulated to guide its searching
direction. Moreover, Ei enhances the diversity of the popula-
tion and thus helps the algorithm to move out of local optima.
ei,d is adopted to vary the velocity of each particle and it is
updated with (4) and (5).

νi.d = b̂.νi.d + c · rd · (ei.d − li.d) (4)

ei,d =
c1 · r1,d · pi,d + c2 · r2,d · gd

c1 · r1,d + c2 · r2,d
(5)

where c is a coefficient and rd is a random value in [0,1].

B. Seasonal-trend Decomposition using LOESS (STL)
STL is adopted for decomposing time series into three

components including trend terms, seasonal terms, and resid-
ual terms. STL contains a series of locally weighted re-
gression smoother and uses Loess to extract the smoothing
estimates of the three components, where Loess is a method
for estimating non-linear relationships. The formula for de-
composing time series data is shown in (6).

Yv=Tv + Sv +Rv (6)

where Yv denotes the original time series at time v. Tv

denotes the trend component at time v, which represents the
low-frequency and long-time variation of the time series data.
Sv is the seasonal component at time v, which represents the
periodic change of time series data and Rv is the residual
component at time v, which represents the residual value
after removing the above two components. The architecture
of the STL consists of an inner and outer loop, where the
seasonal and trend terms are updated with each iteration of
the inner loop. Each iteration of the outer loop includes the
inner loop and the computation of the robustness weights,
which is used to minimize the effect of temporary, outlying
points on the trend and seasonal terms.

Fig. 1. Decomposition of the DO index by STL.

In this work, STL is first utilized to decompose the
predicted DISSOLVED OXYGEN (DO) into three sub-
sequences, including trend terms, seasonal terms, and resid-
ual terms. Then, the three sub-sequences are input to the
model along with other elements in the dataset as feature
dimensions. It enables the model to concentrate more on
learning the complex features of the data, thus enhancing
prediction accuracy. Fig. 1 illustrates the data distribution of
STL’s decomposition of the sequence DO.

C. Overall Architecture of the GS-Autoformer
Fig. 2 illustrates the overall structure of the GS-

Autoformer. It is assumed that Xi = (x1, x2, ...., xt) rep-
resents the value of water quality indicators at different time
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Fig. 2. Structure of GS-Autoformer.

points in the past. Firstly, the features to be predicted in
the water quality indicators are decomposed by the STL into
three components including trend, season, and residual. Then,
these three components are merged with other features in
the original series and then input to the Autoformer. The
decomposition process of the STL is shown in (7).

X = STL(X, s) (7)

where STL(·) denotes the decomposition process using STL.
X denotes the sequence that is input to the encoder and s
denotes the timing cycle.

The Autoformer has an encoder-decoder structure [20],
where the encoder and decoder simultaneously consist of
three modules per layer, namely autocorrelation mechanism,
sequence decomposition, and forward propagation. The en-
coder receives the STL decomposed data as input and focuses
on the seasonal trend. Then, the past seasonal information is
output to the decoder which helps it to adjust the prediction
results. The decoder adopts an autocorrelation mechanism
to model seasonal terms and predict their trend separately.
The autocorrelation mechanism incorporates a multi-head
attention mechanism, and its structure is shown in Fig. 3.
For the trend term, the cumulative method extracts the trend
information from the predicted hidden variables. Finally, the
prediction results of the above components are added together
to obtain the final prediction result.

Connection
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Delay information 
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Linear 
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Linear 

projection
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Fig. 3. Autocorrelation mechanism.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Selection and Processing of Datasets
This paper adopts the dataset from the Wucun automatic

station in Langfang City released by the National Real-time
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Data Distribution System of China [21]. The first field of each
data point indicates the monitoring time, and the other fields
indicate the monitoring values of the corresponding water
quality element. Moreover, the time series data need to be
converted into supervised data by using a sliding window
[22] according to the input step of the prediction model.
Therefore, the GS-Autoformer can make a single or multi-
step prediction of the data indexes, and the specific process
of the data transformation is shown in Fig. 4. Then, the data
are divided into training, validation, and test sets under 7:1:2.

Input sequence
Target 

sequence
1

2

3

M-1

M

…

The window slides along the entire time series

A sequence of sliding windows

Fig. 4. Time-series data to supervised data.

B. Experimental Results

GS-Autoformer is compared with Transformer [23] and
Informer [24] under the prediction step size of (12, 18, 24, 30,
48). Moreover, the optimal parameter setting of each model is
determined by experiments. Finally, the prediction accuracy
of each model is compared.

1) Transformer: The Transformer is adopted to realize the
long-term prediction. During the model’s training process,
optimal prediction performance is achieved by adjusting two
parameter sets: the lengths of the encoder/decoder inputs and
the number of encoder/decoder layers.

Table I demonstrates the parameters adjustment process
of the Transformer with a prediction step length of 12 as
an example, where α and β denote the input length of the
encoder and decoder, respectively. η and θ denote the encoder
and decoder layers, respectively. It is shown that the optimal
value setting of the input length is 24 and that of the decoder
length is 12. Moreover, the optimal value settings of the
encoder and decoder layers are both 1. Fig. 5 shows the
predictive effect of the model after selecting the optimal
parameters. It shows the fitting curve of the Transformer
in predicting the DO metrics at 12 steps, where the blue
curve denotes the true value and the red curve denotes the
prediction value.

Table II shows the RMSE, MAE, and MAPE values for
the Transformer with prediction steps (12, 18, 24, 30, 48).
During the training process, the parameters of α, β, η, and
θ are set as the previous experimental values. Moreover, the
number of multi-attention mechanism headers is set to 8. The
dimension of the model is 512 and the dropout is set to 0.05,
which aims to prevent the overfitting problems of the model.

Fig. 5. Fitting diagram of Transformer in 12-step prediction.

TABLE I
RMSE FOR DIFFERENT ENCODER/DECODER INPUT LENGTHS AND

LAYERS IN TRANSFORMER

Input Lengths: (α, β) RMSE
(12, 6) 0.769
(24, 12) 0.751
(24, 6) 0.775
(32, 12) 0.857
(48, 32) 0.803
(48, 24) 0.768
(48, 6) 0.809

layers: (η, θ) RMSE
(1, 1) 0.747
(1, 2) 0.834
(2, 1) 0.751
(2, 2) 0.761

TABLE II
PREDICTION RESULTS OF TRANSFORMER UNDER DIFFERENT

PREDICTION STEPS

Predicted step size Transformer
RMSE MAE MAPE

12 0.751 0.533 2.379
18 0.804 0.596 2.600
24 0.830 0.639 2.880
30 0.976 0.730 3.456
48 0.941 0.685 2.917

2) Informer: Informer is widely applied in the long-
term prediction of multi-factor data. The same parameters
adjustment process is applied for the Informer. The final
parameters are set as follows: the encoder input length is 32,
the decoder input length is 12, and the number of encoder
and decoder layers are 2 and 1, respectively. The number of
heads of the multi-head attention mechanism is set to 8, the
dimension of the model is 512, and the value of the dropout
is set to 0.05.

Fig. 6 demonstrates the predictive effect of the model after
selecting the optimal parameters. It shows the fitting curve
of the Informer in predicting the DO metrics at 12 steps.
Moreover, it is shown that the predicted value has some
deviation from the true value. Table III demonstrates the
prediction effect of Informer with prediction steps of (12, 18,
24, 30, 48). The prediction results are evaluated by RMSE,
MAE, and MAPE.

3) GS-Autoformer: The proposed GS-Autoformer is uti-
lized to achieve long-term prediction of multi-factor data.
Firstly, GSPSO optimizes Autoformer’s hyperparameters, in-
cluding the encoder input length, the decoder input length,
and the dropout. The RMSE of the Autoformer with different
combinations of the hyperparameters are shown in Table IV.
It is shown that the GSPSO finds the optimal prediction effect
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Fig. 6. Fitting diagram of Informer in 12-step prediction.

TABLE III
PREDICTION RESULTS OF INFORMER UNDER DIFFERENT PREDICTION

STEPS

Predicted step size Informer
RMSE MAE MAPE

12 0.797 0.610 2.944
18 0.880 0.671 2.990
24 0.798 0.612 2.732
30 1.067 0.855 3.131
48 0.965 0.774 3.168

of the model when the encoder input length is 30, the decoder
input length is 24, and the dropout is 0.1. Moreover, Fig. 7
shows the fitting results of the GS-Autoformer in predicting
the DO indicator at 12 steps, where the blue curve denotes
the true values (Ground Truth), and the red curve denotes the
predictions (Prediction). It is shown that the prediction curve
well fits the true value curve.

Fig. 7. Fitting diagram of GS-Autoformer in 12-step prediction.

Fig. 8. Training loss of different models in 12-step prediction.

TABLE IV
RMSE OF AUTOFORMER UNDER DIFFERENT COMBINATIONS OF

HYPERPARAMETERS

Group Encoder length Decoder length Dropout RMSE
1 24 24 0.1 0.779
2 30 24 0.7 0.814
3 30 12 0.1 0.780
4 24 12 0.1 0.795
5 30 12 0.7 1.116
6 24 12 0.7 0.867

GSPSO 30 24 0.1 0.743

Fig. 9. RMSE of different models under different prediction steps.

Fig. 8 shows the variation of the training loss for the
three models in predicting the DO metrics for 12 steps. It
is shown that the Transformer has a training loss of 0.445
after 11 iterations, and the training loss of the Informer
is 0.475 after 10 iterations. Moreover, GS-Autoformer has
a training loss of 0.343 after 7 iterations. Therefore, the
GS-Autoformer has faster training convergence speeds and
small training loss, which outperforms the compared models.
Furthermore, the RMSE of the Transformer, Informer, and
GS-Autoformer for different predicted step lengths are shown
in Fig. 9. It is shown that the GS-Autoformer has the smallest
RMSE values among all different predicted step lengths,
which proves its superiority in multi-factor and long-term
prediction. The better prediction performance of the GS-
Autoformer is firstly due to the GSPSO in the model. It
adjusts the hyperparameters of the Autoformer, which avoids
the influence of manual parameter adjustment. Moreover,
the STL decomposition is adopted and coordinated with
the Autoformer. Therefore, it can better learn the features
of each component decomposed by the STL, which has
advantages in improving the prediction accuracy. Finally,
due to the decomposition architecture within the model and
the autocorrelation mechanism, the prediction ability of the
model is enhanced and the computational complexity of it is
reduced, which ensures the robustness of the GS-Autoformer.
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IV. CONCLUSIONS

Water quality prediction is an important task in pollu-
tion prevention of the water environment, which is sig-
nificant in promoting the sustainable utilization of water
resources. However, most of the existing water quality pre-
diction methods focus on single-step predictive modeling of
a single element, which lacks multi-element data and multi-
step predictive analysis. This paper proposes a multi-factor
and long-term prediction model for the water environment.
It adopts genetic simulated annealing-based particle swarm
optimization (GSPSO) to optimize the hyperparameters of the
model and select the optimal parameter settings. Secondly,
considering that the overall trend of the predicted data shows
a certain seasonal regularity, the model adopts a seasonal-
trend decomposition using LOESS (STL) to decompose the
data features into trend terms, seasonal terms, and residual
terms. It enables the model to learn the features of each
component more attentively, thereby improving the prediction
accuracy. Finally, GSPSO-STL-Autoformer (GS-Autoformer)
is proposed to realize the multi-factor and long-term predic-
tion. Moreover, GS-Autoformer internally reduces computa-
tional complexity and ensures the timeliness of the prediction
through an autocorrelation mechanism. Finally, comparative
experiments show that GS-Autoformer effectively improves
the accuracy of multi-factor and long-term predictions.

In future work, we consider further incorporating the
spatial dimension [25] into our model. To be specific, the
spatial dependence information of each monitoring station is
obtained to realize the spatio-temporal prediction of multi-
factor data, which further enhances the application value of
our GS-Autoformer.
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