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Abstract—Nowadays, the deterioration of water resources
leads to negative ecological impacts. To effectively inhibit the
deterioration of water resources, a water quality prediction
model based on enhanced transformer, sliding block, and chan-
nel independence (WaterTS) is proposed by comprehensively
analyzing the indicators of water resources and making long-
term predictions of the dissolved oxygen index. WaterTS adopts
a sliding block method to extract the short-term temporal
features of the water quality series and combine them with
channel independence to make independent predictions of multi-
featured data. Moreover, it upgrades the internal encoder struc-
ture of the transformer and improves the attention mechanism
to Probsparse-attention and Auto-Correlation to speed up the
prediction speed. Furthermore, Post LayerNormal is adjusted
to Pre LayerNormal, which makes the training gradient more
stable and enhances the accuracy of predictions. Experiments
are conducted using real-world water environment data, and
comparison results with state-of-the-art prediction models show
that the WaterTS achieves accurate predictions on both short-
term and long-term water quality data.

Index Terms—Water quality prediction, channel indepen-
dence, sliding block, Pre LayerNormal.

[. INTRODUCTION

Water stands as one of the most precious resources on
Earth, playing a pivotal role in human survival and develop-
ment. However, the water environment confronts substantial
challenges due to climate change, burgeoning population, and
escalating industrialization. The pollution of water bodies
originates from diverse sources, including discharges from
chemical plants, the application of fertilizers, wastewater
from urban drainage systems, and illicit dumping near rivers
and lakes. These contaminants comprise hazardous sub-
stances, e.g., heavy metals, organic pollutants, and bacteria,
posing severe threats to aquatic life, food supply chains, and
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human health. To effectively tackle these challenges, it is
imperative to accurately predict the water environment in the
future for timely responses.

The relentless advancement of Internet of Things (IoT)
technology has given us an extensive reservoir of data for
investigating water pollution. To collect relevant water quality
data, automatic monitoring stations are established within
pertinent watersheds, systematically collecting continuous
water quality data at regular intervals. This dataset serves
as the foundation for subsequent research on water quality
prediction. Moreover, there are many methods for time series
prediction, but fewer methods are applied in the field of water
environment. Since water quality data are also time series
data, we aim to design a time series prediction method to
conduct research in the field of water quality prediction.

Traditional time series prediction methods, e.g., autoregres-
sive integrated moving average [1], autoregressive moving
average [2], and seasonal autoregressive integrated moving
average [3] are pertinent and robust for time-series prediction.
However, they are less generalized and cannot be well applied
to complex problems. Machine learning-based methods, e.g.,
light gradient boosting machine [4] and extreme gradient
boosting [5] have better predictive performance, but they
require some feature engineering processing, which is time-
consuming and complex. With the development of deep
learning, some prediction methods such as long short-term
memory [6], gated recurrent unit [7], sequence to sequence
[8], wavenet [9], 1D-convolutional neural Network [10] are
highly generalizable and can be well applied to water quality
prediction. Furthermore, Transformer [11] and the derived
long-term prediction models such as Informer [12], Auto-
former [13], FEDformer [14] have achieved great success
in time-series prediction. Therefore, this paper is based on
Transformer and it is further improved and optimized to en-
hance its effectiveness in long-term water quality prediction.

Based on the aforementioned analysis, this paper proposes
a water quality prediction model based on enhanced trans-
former, sliding block, and channel independence (WaterTS).
Water quality data is a multivariate time series data containing
multiple feature information. Based on the input characteris-
tics of the Transformer [15], it can accept both single-channel
and multi-channel data. For Transformer, the multivariate
data are mixed and processed to map the multivariate infor-
mation to a uniform embedding dimension. However, it leads
to lower prediction performance of the model. Therefore,
we aim to disassemble the multi-channel and use each
channel as the input information for the Transformer, and the
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multi-channel data shares the same Transformer parameters.
Moreover, time series prediction uses each point individually
as a prediction step. However, this does not work well for
long-term series prediction, as individual points represent
limited information. Thus, accurate predictions require a
significant amount of prior information. In that case, we
splice the data within a sliding window into localized data
blocks and arrange them in a time sequence. These data
blocks are then input to the Transformer to replace the single-
point sequence. Furthermore, the Attention mechanism has
a significant impact on the model’s predictive effectiveness.
The complexity of the traditional Attention mechanism is
O(N?), and the complexity of improved Probsparse [16]
and Auto-Correlation [17] are both O(N LogN). Therefore,
replacing the original attention mechanism can reduce the
overall complexity of the model. Finally, referring to the
network structure of the large language model, it is proved
that with the increase of encoder layers, the gradient of the
model is relatively smooth when using Pre LayerNormal
pattern [18] to train it, and the effect is better than that of
Post LayerNormal [19]. Therefore, WaterTS is trained under
the Pre LayerNormal pattern.

II. PROPOSED FRAMEWORK

This section first introduces each component in the Wa-
terTS and then gives the overall architecture of it.

A. Channel Independence

WaterTS adopts channel independence to enhance its pre-
diction accuracy. Multivariate data for the water environment
is considered in this paper. Given a set of multivariate
water quality samples X=(z1,--- ,x) with a sliding win-
dow of L where each x; contains K dimensional data.
The prediction model needs to predict the future M data

points, i.e., (xr 41, - ,Tr+ar). The univariate water quality
data from 1 to L are represented by 2\") =(zi,--- ai)
where i€[1,2, -, K]. All feature sequences are split into

individual feature sequences and then they are delivered
to the Transformer by channel independence. The model
gives the prediction result in #\") =(2¢,.-. 2¢) for each
feature sequence, and then the individual feature prediction
sequences are merged and restored to the original form of
prediction sequence.

B. Sliding Block

In traditional time series forecasting, the information is ob-
tained from a single time point, which is then combined with
the past and future time points to make a long-term prediction
[20]. However, this method ignores the information around
that time point. In this case, a sliding-block [21] is adopted to
divide the input series into multiple blocks. They are shorter
sequences containing the original sequence with some local
sequence information, and the number of blocks depends on
the length of the window (1) and the stride length (S). The

LW | 42, The
segmentation process is shown in Fig. 1. Specifically, it is

number of blocks IV is calculated as: N=
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assumed that there is a sequence of 18-time steps and the
length of the sliding window is set to 6. Moreover, the stride
length is also set to 6. Therefore, the sequence is divided into
three blocks.

Value

Blockl Block2 Block3 Time

Fig. 1: Working principle of a sliding block.

C. ProbSparse-attention

The ProbSparse-attention mechanism is adopted in Wa-
terTS. It can not only maintain the predicted performance of
the model but also reduce its computational complexity. The
principle of ProbSparse-attention (A(-)) is shown in (1).

oK’
A(Q, K, V) = Softmax (QK ) A% (1

Vd

where Q, K and V denote query, key and value vectors,
respectively. Q is a coefficient matrix and contains only
the top k query vectors, all query vectors are obtained by
calculating the sparsity, and the computation with the key
takes the first £ query vectors. d denotes the scaling factor
and it is the first dimension of K. Softmax(-) denotes the
normalization process. Moreover, the algorithmic complexity
is reduced to O(N LogN).

D. Auto-Correlation

WaterTS adopts Auto-Correlation [22] to realize efficient
sequence-level connections. Specifically, it first calculates the
correlation between the original sequence and the lagging
sequence. Then, it finds the subsequence with similar peri-
odicity and selects the most likely top k cycle lengths. Fi-
nally, it performs the attention score calculation. In addition,
compared to the traditional attention mechanism, it reduces
the time complexity to O(N LogN). The principle of Auto-
Correlation (Auto-Correlation(-)) is shown as follow:

T, , 7k = arg Topk (Rg k(7)) @
Te{l’ ’L}
ﬁQ,IC (1), aﬁQ,’C (k) = 3)
Softmax (Ro,x (11),- -+, Ro,k (Tk))
k o~
Auto-Correlation(Q, K, V) = Z Roll (V,7;) Ro.x (14)
i=1

“
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Fig. 2: Network structure of the WaterTS.

where argTopk(-) shows the top k independent variables of
the autocorrelation, 75, denotes the delay k. Rg x represents
the autocorrelation of Q and K. 75,97 i (7:) denotes the result
of 7; after the softmax process. Roll (V, ;) represents the
effect of the time delay 7; on V.

E. Pre LayerNormal

The general structure of the Transformer is Post Layer-
Normal, which performs layer normalization (LN) after the
residuals, but we aim to put the LN before the residuals,
which is Pre LayerNormal. The reason for this is that when
the number of layers of the Transformer is increased, the
backpropagation can avoid the gradient explosion and disap-
pearance of the live gradient. Therefore, the Pre LayerNormal
is better for a larger number of layers.

FE. Architecture of the WaterT$S

The WaterTS consists of three main components, including
channel independence, sliding block, and Transformer. The
multivariate data is disassembled using channel independence
to make separate predictions for individual dimensions and
finally integrated. Moreover, the sliding block makes the
model focus on local information and reduces its compu-
tational complexity. Furthermore, the internal structure of
the Transformer is changed from Post LayerNormal to Pre
LayerNormal to accommodate a large number of layers,
which makes model training more stable. Finally, the tradi-
tional multi-head attention is adjusted to Probsparse-attention
or Auto-Correlation, which is more adapted to time series
prediction tasks.

The structure of the WaterTS is shown in Fig. 2. Specif-
ically, the multivariate data is first divided into features and
used as the input. Then, each feature is split independently to
form multiple single-feature time series data. Next, the mul-
tiple single-feature time series data are subjected to sliding

block processing, which divides them into multiple consec-
utive time blocks containing local features. The segmented
time blocks are connected to serve as the input data for the
Transformer. It is worth noting that before inputting into the
Transformer, positional encoding is performed to maintain
the order between sliding blocks. Then, the data enters
into the encoder part of the Transformer and undergoes Pre
LayerNormal, which normalizes the data distribution. After
that, it undergoes ProbSparse-attention or Auto-Correlation
to regulate the weight distribution. In addition, the specific
kind of attention to use needs to be chosen rationally based on
different datasets. Therefore, for WaterTS, the one that adopts
the Auto-Correlation is named Auto_WaterTS, while the one
with the ProbSparse-attention is named PS_WaterTS. After
that, the residuals are connected and after Pre LayerNormal
and feed-forward neural network, the residuals are connected
again, i.e., a complete encoder block. It is important to note
that the model needs to be stacked with N such blocks.
Finally, after the multi-layer Transformer Encoder, the data
is mapped through a linear head to get the final multivariate
prediction result.

III. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the experimental results of the Wa-
terTS and the comparative models. All models are trained
and validated on the RTX 4090 server.

A. Dataset and Evaluation Metrics

WaterTS is evaluated on two high-quality water quality
datasets, i.e., the water body data released by the U.S. Geo-
logical Survey (USGS) for the state of California from May
2012 to August 2020, and the water body data collected in
the Beijing-Tianjin-Hebei region within China (China_Water)
from August 2018 to December 2021. It is worth noting that
the dissolved oxygen (DO) indicator in water is one of the
most important indicators reflecting the quality of the water

272

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on July 22,2025 at 03:56:45 UTC from IEEE Xplore. Restrictions apply.



TABLE I: Predicted results of different models with different datasets

Models PS_WaterTS Auto_WaterTS Autoformer Informer Transformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
1 0.0020 | 0.0302 0.0015 0.0268 | 0.0443 | 0.1550 | 0.0480 | 0.1011 | 0.0212 | 0.0894
4 0.0023 | 0.0327 0.0020 0.0300 | 0.0331 | 0.1263 | 0.0428 | 0.0841 | 0.0247 | 0.1128
8 0.0045 | 0.0449 0.0037 0.0399 | 0.0378 | 0.1350 | 0.2420 | 0.1400 | 0.0269 | 0.1214
USGS 16 0.0069 0.0520 0.0081 0.0566 | 0.0553 | 0.1716 | 0.0362 | 0.1314 | 0.0300 | 0.1198
96 0.0369 | 0.1231 0.0371 0.1226 | 0.0732 | 0.1926 | 0.0895 | 0.2024 | 0.0718 | 0.1953
192 | 0.0624 0.1626 0.0639 0.1641 | 0.1428 | 0.2689 | 0.1739 | 0.2948 | 0.1176 | 0.2366
384 | 0.1139 0.2219 0.1423 0.2561 | 0.2617 | 0.3582 | 0.4448 | 0.4961 | 0.3190 | 0.3995
672 | 0.1921 0.2881 0.2043 0.3010 | 0.4448 | 0.4904 | 0.4992 | 0.5298 | 0.4301 | 0.4675
1 0.1986 | 0.2599 0.1981 0.2577 | 0.4431 | 0.4910 | 0.4205 | 0.4939 | 0.2590 | 0.3259
2 0.2472 | 0.2898 | 0.02479 | 0.2892 | 0.5787 | 0.5503 | 0.4587 | 0.4939 | 0.4292 | 0.4790
3 0.2794 | 0.3142 0.2789 0.3144 | 0.6005 | 0.5632 | 0.4620 | 0.4655 | 0.4385 | 0.4733
China Water 4 0.3041 | 0.3350 0.3033 0.3318 | 0.6210 | 0.5724 | 0.4874 | 0.4892 | 0.5190 | 0.5418
- 6 0.3411 0.3564 0.3414 0.3584 | 0.6469 | 0.5860 | 0.4855 | 0.4828 | 0.4975 | 0.5064
18 0.4888 0.4612 0.4841 0.4566 | 0.6670 | 0.5965 | 0.5837 | 0.5388 | 0.8632 | 0.7173
30 0.6258 | 0.5492 0.5887 0.5271 | 0.7272 | 0.6308 | 0.6379 | 0.5998 | 1.4194 | 0.9372
42 0.6340 0.5544 0.6478 0.5621 | 0.7485 | 0.6404 | 0.8182 | 0.6973 | 1.0221 | 0.8139

body, which is predicted by our experiments. Moreover, to
verify the prediction ability of the WaterTS, the error between
the predicted value and the real value is calculated by using
two error evaluation indexes, including mean squared error
(MSE) and mean absolute error (MAE). They complement
each other, MSE is easy to compute, and MAE has better
robustness to anomalies.

B. Parameter Tuning

The parameters affecting the effectiveness of the WaterTS
mainly contain three elements including the length of the
sliding block, the number of encoder layers, and the number
of attention heads. It is worth noting that Auto_WaterTS
and PS_WaterTS only have different attention layers, all
other structures are the same. As a result, the trends and
optimal points in the parameter tuning of the two models are
consistent. Therefore, the average value [23] is taken to show
the tuning results.

Firstly, we research the influence of the length of
the sliding block on the prediction effect, we choose
We {4,8,16,32,64}, and choose the length of fixed stride
to ensure the fairness of the experiment. The experimental
result is shown in Fig. 4. It is shown that the best effect is
achieved when W is set as 32. Subsequently, we examine
the impact of varying the number of layers in the encoder
(E) on prediction performance. As the number of layers in
the encoder increases, the data tends to converge towards the
true value. We select E€ {2,4,8,16,32} for our analysis.
The results are depicted in Fig. 5, revealing that the optimal
number of layers is set to 4. Finally, we investigate the
impact of varying the number of attention heads. A greater
amount of attention heads widens the scope of observation,
leading to increased synthesis of information and improved
prediction accuracy. A denotes the number of attention heads
and we explore A€ {2,4,8,16,32}. The experimental results
are illustrated in Fig. 6. It is shown that the optimal effect
is achieved when A is taken as 4. It is worth noting that
“more is better” does not necessarily hold, and the number
of attention heads needs to be balanced.

C. Comparison Experiments

The long-term time series prediction models that have
been studied in recent years are selected for comparison, i.e.,
Transformer, Informer, and Autoformer. They are compared
with our PS_WaterTS and Auto_WaterTS in the two types
of water quality datasets, including short-term and long-term
prediction. Moreover, the evaluated metric functions are MSE
and MAE.

The comparison results are shown in Table I. The
best results are shown in bold, while the second is
underlined. For the USGS dataset, we select a range of
Te{1,4,8,16,96,192,384,672}, where each step repre-
sents 15 minutes, so the corresponding prediction ranges are
15min, 1 hour, 2 hours, 4 hours, 1 day, 2 days, 4 days, and
8 days. For the China_Water dataset, we select a range of
T'e{1,2,3,4,6,18,30,42}, where each step represents 4
hours, so the corresponding prediction ranges are 4 hours,
8 hours, 12 hours, 16 hours, 1 day, 3 days, 5 days, and 7
days. The prediction effect of USGS dataset is shown in Fig.
3, and the prediction effect of China_Water dataset is shown
in Fig. 7.

TABLE II: Training time of different models

Model Epoch training time (s)  Total training time (min)
PS_WaterTS 11 9.17
Auto_WaterTS 20 16.67
Transformer 30 25.00
Autoformer 110 91.67
Informer 251 209.17

It is shown in Figs. 3 and 7 that the prediction results of
Auto_WaterTS (blue curve) and PS_WaterTS (purple curve)
are closer to the real data (green curve) compared to bench-
mark models on both datasets. In addition, it is illustrated
in Table I that Auto_WaterTS and PS_WaterTS achieve the
top two results on different datasets with different step sizes,
proving that WaterTS has excellent predictive ability and high
robustness. Furthermore, the training time of each model is
shown in Table II. It shows the time consumed by different
models in one epoch and total training for a prediction step
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Fig. 3: Predicted results for a step size of 672 on the USGS dataset.
Predict=42 Predict=42
0.71 1
0.67 1
0.70 1
0.661 0.69 1
= 0.68
0.65 1 <
0.67 1
0.64 - 0.66 -
0.65 1
0.63 1
8 16 32 64 2 4 8 16 2
Block size Attention head
Fig. 4: MSE of WaterTS under different W. Fig. 6: MSE of WaterTS under different A.
Predict=42 of 42 as an example. It can be seen that WaterTS consumes
the shortest training time.
0.655 1 IV. CONCLUSIONS
At present, the global water resources environment is grad-
0.650 - ually deteriorating. It is affecting people’s health and social
development. Thus, real-time prediction of water quality data
is needed for timely response. Therefore, we propose a water
0.6451 quality prediction model based on enhanced transformer,
sliding block, and channel independence (WaterTS) in this
0.640 - work. It combines sliding block and channel independence
for independent prediction of the multi-featured data. More-
over, it adopts Probsparse-attention and Auto-Correlation
0.635+ " : . 5 to improve the predictive speed of the model, allowing it

Fig. 5: MSE of WaterTS under the different E.

to respond more quickly to changes in water quality. In
addition, the original Transformer structure is improved to
replace the Post LayerNormal with the Pre LayerNormal

Encoder layer
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Fig. 7: Predicted results for a step size of 42 on the
China_Water dataset.

to enhance the predictive accuracy. The proposed WaterTS
is validated against two real-world water quality datasets,
and the results verify that each component in WaterTS is
effective. In addition, its predictive performance on these
datasets is superior to the compared models. In future work,

we

will further investigate the integration of block thinking

and channel independence prediction with advanced deep
learning methods on time series prediction. We also intend to
incorporate optimization algorithms [24], [25] to choose the
parameters of the model, avoiding manual selection errors.
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