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Abstract—With the rapid development of the Internet, var-
ious network invasive behaviors are increasing rapidly. This
seriously threatens the economic development of individuals,
enterprises, and society. Network intrusion detection is impor-
tant in network security systems, which can be regarded as
a classification problem. It aims to distinguish between the
specific categories of various network behaviors and determine
whether the behavior belongs to network intrusion. However,
network intrusions present a diverse and fast-changing trend,
making categorizing difficult. Due to feature redundancy, un-
even distribution of sample numbers, and inefficient parameter
optimization, traditional rule-based approaches fail to achieve
satisfying classification accuracy. This work proposes a multi-
classification intrusion detection model based on Stacked Sparse
Shrink AutoEncoder (SSSAE), Genetic Simulated annealing-
based particle swarm optimization optimized Tabnet classifier
(GS-Tabnet), and Decision Fusion (DF), called for SGTD short.
Among them, SSSAE extracts multiple feature sets from the
input data. Then GS-Tabnet trains a classifier for each feature
set. Finally, the decision fusion fuses the results from these
classifiers to obtain the final classification result. SGTD is
compared with eight multi-classification benchmark models, and
its intrusion detection accuracy is superior to its peers.

Index Terms—Feature learning, autoencoder, network intru-
sion detection, intelligent optimization algorithm.

I. INTRODUCTION

Nowadays, human society has entered the information age.
With the continuous development of the Internet, network
demand and dependence continue to increase. In this case,
network applications and behaviors increase dramatically, and
the number of users grows rapidly [1]. However, different
kinds of network invasions also continue to emerge, which
exposes the network environment to risk. Therefore, detecting
network intrusion behavior has become important to maintain
network security [2]. Intrusion detection can be regarded as
a classification problem that identifies categories of network
behaviors through various types of data features to distinguish
normal network activities from network intrusions [3]. How-
ever, as network intrusion scenarios become more complex,
they show diverse and fast-changing trends, turning network
intrusion detection into a large-scale multi-feature extraction
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and multi-classification task for massive amounts of data. The
problem’s complexity and the large data size make traditional
approaches ineffective for solving network intrusion detection
problems.

Traditional machine learning methods are widely adopted
in classification problems, e.g., K-Nearest Neighbor (KNN)
[4], and Support Vector Machine (SVM) [5]. They are
utilized to construct a single classifier for behavioral data
classification to detect network intrusions. However, their
simple network structures lack deep exploration of the re-
lationship between data features and behavioral categories.
They cannot perform feature screening and high-level fea-
ture extraction effectively [6]. In addition, they have poor
stability and cannot adapt to multi-classification tasks. To
avoid these limitations, deep learning models are applied in
classification tasks. Recurrent Neural Networks (RNN) [7]
and Convolutional Neural Networks (CNN) [8] are classical
methods used in sequence modeling and classification tasks.
Among them, Long Short-Term Memory (LSTM) [9] has
a unique cell state and gating mechanism that can better
capture long-term dependencies and avoid falling into gra-
dient vanishing [10]. It is well utilized in network intrusion
detection problems. However, most deep learning methods
based on feature extraction use a linear layer for classification
processing, and there is a lack of research on classifiers for
processing feature sets, limiting their scalability. In addition,
deep learning methods based on feature extraction and feature
learning have gained widespread attention in recent years.
These methods first extract high-dimensional features from
the input datasets by a feature extractor and then use the
resulting high-dimensional feature sets to train a classifier
for classification. In this case, the relationships between the
original data features are explored, and the high-dimensional
features that are easier to train the classifier are extracted,
improving the model’s classification accuracy.

Based on the above analysis, this work constructs
a multi-classification intrusion detection model based on
Stacked Sparse Shrink AutoEncoder (SSSAE), Genetic Simu-
lated annealing-based particle swarm optimization optimized
Tabnet classifier (GS-Tabnet), and Decision Fusion (DF)
[11], called for SGTD short. First, multiple Sparse Shrink
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AutoEncoders (SSAEs) are stacked to form an SSSAE.
Specifically, the feature set extracted from the previous SSAE
is used as the input to the subsequent SSAE, which is stacked
sequentially to obtain a higher-dimensional feature set based
on the previous one. Accordingly, feature extraction is per-
formed using the SSSAE, with one feature set extracted for
each SSAE. Then, each feature set is utilized by a GS-Tabnet.
It learns the weight of each feature’s impact on the detection
result through a sequential attention mechanism. Moreover,
Genetic Simulated annealing-based Particle Swarm Opti-
mization (GSPSO) [12] optimizes the hyperparameters of
the Tabnet [13] to find the combination of hyperparameters
that maximizes the classification effect. Finally, the DF fuses
the detection results of multiple GS-Tabnet to output the
final classification result. SGTD is compared with eight
benchmark models, and the experimental results show the
effectiveness and accuracy of SGTD in multi-classification
network intrusion detection problems.

II. PROPOSED FRAMEWORK

A. Stacked Sparse Shrink Autoencoder

The network structure of an autoencoder [14] is simple,
which fails to adequately fit samples when facing the multi-
classification problem, leading to poor detection results. In
this work, we consider stacking multiple autoencoders, and
the features extracted from the former autoencoder are used
as inputs to the latter one, forming a stacked autoencoder.
Therefore, it has a more complex network structure and
can further extract higher-dimensional features [15] from the
previous autoencoder, which is suitable for more detailed
multi-classification tasks. Moreover, certain neurons in the
autoencoder are activated when the model undergoes training,
and it relies too much on them. When the input data changes,
the overall extraction ability deteriorates, and the generaliza-
tion ability weakens. To solve this problem, Kullback–Leibler
(KL) scatter [16] is introduced as the regular term of the
stacked autoencoder, i.e.,

KL(ρ || ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j
(1)

where ρ̂j denotes the activation level of the neuron j during
the training process, ρ indicates the average level of activation
desired for a neuron. KL(ρ || ρ̂j) represents the gap between
ρ̂j and ρ. Moreover, the model achieves control over the
neuron’s activation level by making KL(ρ || ρ̂j) as small as
possible. When neuronal activation is high, KL(ρ || ρ̂j) also
increases and the neural network penalizes this phenomenon
during training and tries to keep neuronal activation at the
desired level.

Moreover, the dataset contains small disturbances during
processing. Thus, it is imperative to make the model robust
to the perturbation of the input data. This work introduces a
shrinkage loss term based on the Frobenius paradigm [17] of
the Jacobian matrix [18], i.e.,

∥ Jf (x) ∥2F=
∑
ij

(
∂hj(x)

∂xi
)2 (2)

where ∥ Jf (x) ∥2F denotes the Frobenius of the Jacobian ma-
trix for the input x. hj(x) denotes the neuron j’s input repre-
sentation. The shrinkage loss forces all mappings learned by
the autoencoder to have a small gradient concerning the input
data. The autoencoder reconstruction loss learns a constant
mapping that makes the output equal to the input. Driven
by these two losses, most mappings have small gradients
concerning the input, while only a few have large gradients.
In this case, when the input has small perturbations, the
small gradients reduce these perturbations, thereby increasing
the robustness of the autoencoder. Moreover, sparse loss
and shrinkage loss are added to the stacked autoencoder to
construct the SSSAE feature extractor. The loss function of
SSSAE is shown in (3).

LS

(
Ŵ , b

)
= LA

(
Ŵ , b

)
+κ ∥ J

f
(x) ∥2

F
+τ

J∑
j=1

KL(ρ ∥ ρ̂j )

(3)
where LS

(
Ŵ , b

)
denotes the loss function of the SSSAE.

Ŵ and b denote parameter matrices. LA

(
Ŵ , b

)
denotes the

loss function of a stacked autoencoder. κ ∥ J
f
(x) ∥2

F
and

τ
∑J

j=1 KL(ρ ∥ ρ̂
j
) denote the shrinkage loss and sparse

loss, respectively. κ and τ are used to regulate the weights
of the two loss terms.

The SSSAE consists of multiple SSAEs. The input data
is passed into the first SSAE, and the first feature set is
generated in its hidden layer. Then, it is used as the input
to the second SSAE, and the second feature set is obtained
in the hidden layer of the second SSAE. By analogy, the
SSSAE is constructed, and the input data is extracted into
multiple feature sets.

B. GS-Tabnet

In this subsection, the Tabnet is introduced and further
optimized. The network structure of Tabnet is shown in Fig.
1. It is a multi-step additive model, and each decision step is
generated based on the data from the previous decision step
through the attentive transformer. The input to each step is a
B×D matrix, where B denotes the number of samples, and
D denotes the number of features of the input data.

First, the input samples are passed to the Batch Normal-
ization (BN) layer [19] for normalization, which is then
computed by the feature transformer. This process is shown
in Fig. 2. Specifically, the feature transformer consists of
two parts: a part shared by all decision steps, and a part
unique to each decision step. It can prevent large fluctuations
in the variance of the model. The Fully Connected layer
(FC)+BN+Gated Linear Unit (GLU) structure is the residual
connection. After data input, it first passes through the
shared across decision steps, which are connected by two
FC+BN+GLU structures. Then, it enters the decision step
dependent, which has the same structure as the previous one,
and this layer is mainly used to calculate the uniqueness of
the features. After this, the computation of the common and
unique parts of the features is completed. Feature selection
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Fig. 1. Structure of the Tabnet.

is realized in the attentive transformer. The structure of
the attentive transformer is shown in Fig. 3. Specifically, it
consists of FC, BN, Prior scales, and SparseMax. Among
them, FC and BN are used to realize linear combinations
to get higher dimensional features. Prior scales are the prior
information when choosing features in the current decision
step [20]. SparseMax is used to regulate the weights of each
feature of a sample, thus enabling feature selection.
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Fig. 2. Structure of feature transformer.

It is worth noting that the Tabnet has several hyperparam-
eters, among which nd, na, and ns have a greater impact
on the final results of the model. nd represents the width
of the decision classification layer, na represents the width
of the attention embedding, and ns represents the number of
decision steps of the model. It is important to find the optimal
combination of parameters so that the classification effect of
the model can be maximized.

This work applies GSPSO [21] to optimize the hyperpa-
rameter, including nd, na, and ns. GSPSO is an intelligent
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Fig. 3. Structure of attentive transformer.

optimization algorithm that searches the decision space to
find the globally optimal solution. In this problem, nd, na,
and ns are decision variables, and the objective function
is classification accuracy. It first initializes the position and
velocity of each particle and updates its objective function
value. Then, it generates the offspring by a certain strategy.
Moreover, each individual has a mutation probability, and
the Metropolis acceptance rule selects individuals for the
next iteration. Finally, the global optimal solution is obtained
when the termination condition is met.

C. Combined Feature Decision Fusion Algorithm

A single classifier faces the problem of insufficient stability
and generalization ability. Accordingly, this work integrates
multiple classifiers and makes comprehensive decisions to
improve the model’s stability and accuracy. The SSSAE is
adopted to extract multiple sets of features. Although each
is a higher-dimensional feature set obtained based on the
previous one, there is inevitably a loss of information in them.
Therefore, a GS-Tabnet classifier is constructed for each
feature set to utilize its information. Finally, a decision fusion
algorithm is proposed to summarize the classification results
of multiple classifiers and output the final classification result.
Specifically, the results of the N classifiers are passed into
the decision fusion algorithm to output the final network
intrusion detection result.

The pseudo codes of the combined feature decision fusion
algorithm are shown in Algorithm 1. Specifically, the input
sample set is denoted as x, and the number of categories
is denoted as k. GS-Tabnet outputs the probability of each
sample i belonging to each category j, and it is denoted as
pij . Moreover, the weight coefficient of each classifier is Wi.
The final classification result is obtained after the combined
feature decision fusion algorithm.

D. Overall Framework of SGTD

Fig. 4 shows the overall framework of SGTD. Specifically,
the input dataset is first passed into the first SSAE to extract
the input dataset and obtain a feature set. Then, it passes
to the next SSAE, stacking N SSAEs to form SSSAE and
extracting N feature sets. Next, a GS-Tabnet classifier is
trained for each feature set. It can well distribute feature
weights through its unique sequential attention mechanism.
Moreover, GSPSO optimizes the hyperparameters of Tabnet
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Algorithm 1 Combined feature decision fusion algorithm
1: Initialize weight Wi=0 i ∈ {1, 2, ..., N}
2: while i<N do
3: For each feature set, GS-Tabnet is adopted to determine

whether the classification is correct and obtain pij(x)
4: if classified correctly then
5: Wi++
6: end if

Pij=Wipij(x), j ∈ {1, 2, ..., k}
Ri=maxj∈{1,2,...,k} Pij

7: end while
8: Calculate the category y = maxi∈{1,2,...,N} Ri

9: Return y

to maximize its classification effect. N GS-Tabnet classifiers
output N classification results. Finally, the obtained N clas-
sification results are input into the combined feature decision
fusion algorithm to output the final classification result.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Datasets Selection and Evaluation Metrics

1) Datasets: This work adopts the KDD99 dataset that
contains records from the military cyber environment in
which the attack is embedded. Table I describes the details
of the dataset. Specifically, it contains 114 features and has
five broad categories: Normal, Probing, U2R, DOS, and

R2L. Normal represents normal behavior, and the other four
types represent four different kinds of intrusion behavior. The
training set contains 494,021 pieces of data, and the test set
contains 311,029 pieces of data.

TABLE I
DETAILED INFORMATION OF KDD99

Characteristic number Categories Sample size
Training set Test set

Normal 97278 60593
Probing 4107 4166

114 U2R 1126 16189
DOS 391458 229853
R2L 52 228
Total 494021 311029

2) Evaluation Metrics: The accuracy rate is chosen as the
evaluation index of the model. Moreover, because network
intrusion detection is a multi-classification problem, there are
multiple categories of data. Thus, it is necessary to consider
the weighted average of the samples of each category as the
final result. F1 score is adopted as an evaluation indicator,
i.e.,

F1 =
J∑

j=1

Nj(F1)j (4)
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where Nj denotes the proportion of the sample size of
category j to the total sample size. (F1)j denotes the F1

score of category j.

B. Hyperparameter Tuning

Fig. 5. Comparison of different optimizers and epochs of AE.

TABLE II
COMPARISON OF DIFFERENT ACTIVATION FUNCTIONS OF AE.

Serial number Activation function Accuracy F1
1 Sigmoid 88.37% 86.22%
2 Relu 88.69% 86.98%
3 Leaky Relu 88.50% 86.35%
4 Tanh 87.37% 85.81%

TABLE III
COMPARISON OF DIFFERENT HIDDEN LAYER NUMBER AND HIDDEN

LAYER NEURON OF AE

Hidden layer Hidden layer neuron Accuracy F1
1 32 89.32% 87.58%
1 64 88.78% 85.98%
1 96 88.03% 85.77%
2 32-64 89.15% 87.69%
2 64-96 90.11% 87.91%
2 32-96 89.27% 87.90%
3 32-64-96 90.27% 87.95%

The comparative models include AutoEncoder (AE),
LSTM, CNN, and Variational AutoEncoder (VAE). Each
model’s parameter selections are conducted to optimize the
model detection effect. For AE, the training optimizer directly
affects the model’s fitting degree. Four optimizers (Adam,
ASGD, SGD, and Adagrad) are chosen to be trained 500
times each. The best optimizer is chosen by comparison. It
is shown in Fig. 5 that the Adam optimizer achieves the
minimal loss. Moreover, AE’s activation function needs to
be determined with experiments. The Sigimoid, Relu, Leaky
Relu, and Tanh functions are selected for the experiments.
The results are shown in Table II. It is concluded that AE
achieves the best classification results when using the Relu
function. Finally, the number of hidden layers of the AE
needs to be determined, where the number of hidden layers is
selected in (1,2,3), and the hidden layer neurons are selected
in (32,64,96). The experimental results are shown in Table

III. It is shown that when the hidden layer of AE is three,
and the neurons in each layer are 32, 64 and 96, the AE
intrusion detection model achieves the optimal accuracy and
F1. Due to space issues, the tuning process for the rest of
the models is similar and not shown in detail. For SGTD,
Adam and Relu are selected as the optimizer and activation
function, respectively. SSSAE stacks 3 SSAEs with 32, 64
and 96 hidden layer neurons per SSAE. τ=0.4 and ρ=0.6.
Moreover, the effectiveness of GSPSO is shown in Table IV.
It is shown that GSPSO optimized Tabnet can achieve higher
accuracy in network intrusion detection and avoid the bias of
manual parameter adjustment.

TABLE IV
COMPARISON OF GSPSO AND MANUAL PARAMETERS ADJUSTMENT

Serial Number nd na ns Accuracy F1
1 4 4 3 89.29% 87.11%
2 4 6 3 90.42% 88.70%
3 4 8 3 90.03% 88.17%
4 6 4 3 88.74% 86.90%
5 6 6 3 88.91% 87.23%
6 6 8 3 90.17% 88.39%
7 8 4 3 88.54% 87.02%
8 8 6 3 88.87% 86.78%
9 8 8 3 89.49% 87.56%
10 4 4 3 90.23% 88.41%
11 4 6 3 90.15% 88.29%
12 4 8 3 89.55% 87.99%
13 6 4 3 88.64% 86.35%
14 6 6 3 87.80% 85.98%
15 6 8 3 90.31% 87.77%
16 8 4 3 88.68% 86.78%
17 8 6 3 90.48% 88.68%
18 8 8 3 90.89% 89.01%

GSPSO 3 6 6 91.65% 89.76%

C. Experimental Results and Discussion

In addition to the LSTM, CNN, AE and VAE, this work
also uses AE and VAE as feature extractors combined with
LSTM and CNN classifiers to construct AE-LSTM, AE-
CNN, VAE-LSTM, and VAE-CNN models. As a result, after
parameter tuning, SGTD is compared with eight benchmark
models on the KDD99 dataset for intrusion detection. Table
V depicts the accuracy of SGTD with other benchmark
models. It is shown that the SGTD achieves a higher accuracy
and F1 than the other eight benchmark models, proving its
effectiveness in network intrusion detection.

TABLE V
COMPARISON OF DETECTION EFFECTS OF DIFFERENT MODELS ON

KDD99 DATASET

Serial Number Model Accuracy F1
1 LSTM 90.25% 87.89%
2 CNN 89.78% 87.45%
3 AE 90.27% 87.67%
4 VAE 90.12% 88.03%
5 AE-LSTM 90.45% 88.23%
6 AE-CNN 90.36% 88.06%
7 VAE-LSTM 90.29% 88.12%
8 VAE-CNN 90.15% 88.16%
9 SGTD 91.65% 89.76%
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D. Ablation Experiments

The SGTD consists of three parts: SAE, GS-Tabnet, and
the combined feature decision fusion algorithm. Ablation
experiments are performed to validate the effectiveness of
each part. The results are shown in Table VI. Among them,
No. 1-3 indicate network intrusion detection with SAE,
SSSAE and SSSAE-Tabnet. No. 4 adds GSPSO to optimize
Tabnet, and No. 5 adds the combined feature decision fusion
algorithm, which is the SGTD. It is shown that each part in
the SGTD contributes positively to the model to improve
detection accuracy, proving the validity of SSSAE, GS-
Tabnet, and the combined feature decision fusion algorithm.

TABLE VI
SGTD ABLATION EXPERIMENT

Serial Number (No.) Model Accuracy F1
1 SAE 90.19% 87.72%
2 SSSAE 90.40% 88.06%
3 SSSAE-Tabnet 90.89% 88.98%
4 SSSAE-GS-Tabnet 91.12% 89.34%
5 SGTD 91.65% 89.76%

IV. CONCLUSIONS

Network intrusion detection is important in constructing
network security prevention and control systems, which is
significant in maintaining network security. However, tradi-
tional network intrusion detection methods are often adopted
to directly process the original data, resulting in incom-
plete consideration of the correlation between features and
interference by invalid features. Moreover, using a single
classifier has problems of poor generalization and stability.
This work proposes a novel multi-classification intrusion de-
tection model based on Stacked Sparse Shrink AutoEncoder
(SSSAE), Genetic Simulated annealing-based particle swarm
optimization optimized Tabnet classifier (GS-Tabnet), and
Decision Fusion (DF), called for SGTD short. Among them,
SSSAE is designed to extract multiple features from the input
data. Then, GS-Tabnet trains a classifier for each feature
set. Finally, the combined feature decision fusion algorithm
fuses the results from these classifiers to obtain the final
classification result. SGTD is compared with eight multi-
classification benchmark models. The experimental results
demonstrate the effectiveness and accuracy of SGTD in
multi-classification network intrusion detection.

In future work, we will consider further accessing the time
dimension to obtain the time information of each network
behavior to achieve more comprehensive intrusion detection.
Moreover, we use SSSAE to extract features from the input
data, which is unsupervised learning. To improve the effec-
tiveness of the feature extraction, labels can be introduced in
the training phase of the feature extractor, outputting a more
differentiated feature set.
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