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Abstract—The advent of smart manufacturing in Industry 4.0
signifies the arrival of the era of connections. As an excellent
communication protocol, Object linking and embedding for
Process Control Unified Architecture (OPC UA) can address
most semantic heterogeneity issues. However, its semantics are
not formally defined at the application layer. To address the
information silo problem caused by semantic heterogeneity, a
method named Querying of Ontology Mapping-based OPC UA
(QOMOU) is proposed. It extracts the information models of
OPC UA servers into resource description framework triples,
utilizes web ontology language for semantic enrichment and
inference, and employs a semantic similarity model for event
ontology mapping to improve query efficiency. The method’s
effectiveness is validated through functional queries using the
SPARQL protocol in Apache Jena. The query efficiency is
5% higher on average compared to both structured query
and extensible markup languages. Moreover, by employing a
keyword-matching algorithm, the query accuracy of the existing
heterogeneous data integration scheme is improved by 4% on
average. This enhancement can boost the operational efficiency
of Internet of Things systems based on the OPC UA architecture.

Index Terms—OPC UA, ontology, syntactic interoperability,
semantic similarity, semantic heterogeneity.

I. INTRODUCTION

With the rise of Industry 4.0, communication between
devices has become increasingly important. To achieve the
Internet of Things, Object linking and embedding for Process
Control Unified Architecture (OPC UA) emerges as a unified
architecture for communication on the Industry 4.0 open plat-
form [1]. OPC UA is a unified communication protocol that
can facilitate communication between devices and systems
from different vendors without caring about details of the
underlying implementation. Fig. 1 illustrates the overview of
vertical and horizontal communication. OPC UA standardizes
communication from the field level to a unified information
level, adding metadata to each data object to describe its type,
structure, and characteristics [2].

However, interoperability issues may still arise between
OPC UA products from different vendors, presenting chal-
lenges when integrating devices from various manufactur-
ers. In other words, OPC UA meets the requirements of
syntactic interoperability at the information layer. However,
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semantic interoperability at the information layer remains
undetermined. Distributed data management and interoper-
ability rely on specified ontologies between two or more
machines at this point. These ontologies can automatically
and accurately interpret the meaning of exchanged data and
apply it to valuable objectives. For semantic interoperability,
ontologies must consider the metadata exchanged between
different systems and environments. Raising the level of
semantic interoperability can better achieve communication
between the control level and the enterprise level. In these
communications, providing simple and convenient human-
machine interaction interfaces enables even non-technical
managers to clearly understand the operational status of the
factories or processes through the interactive interfaces. This
helps improve production efficiency [3], reduce costs [4], and
enhance management decision-making.
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Fig. 1. Overview of vertical and horizontal communications.

The most significant obstacle faced by widespread appli-
cations of the Internet of Things and automation systems
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Fig. 2. Transition from syntax to semantic interoperability.

is semantic interoperability. Industry organizations are trying
to implement semantic data models that cover a wide range
of industries and systems [5], e.g., the Object Management
Group, Global Standards 1, and Schema.org. However, they
are based on a series of industry segments, and they are
not formally defined at the semantic level. In this case,
the solution to semantic interoperability is to increase the
meaning of data. Data from smart devices is stored and
transmitted in multiple formats, with inconsistent and non-
standardized naming conventions and limited descriptions to
understand their meanings. Current studies aim to enrich
the meaning of data to improve semantic interoperability.
For example, Westermann et al. [6] propose a semantic
model that formalizes variables in events and utilizes an RDF
query language (SPARQL) for querying and accessing data.
However, this approach does not provide a clear solution for
dealing with heterogeneous data, and it does not validate the
accuracy of the query. Bakakeu et al. [7] convert the OPC UA
information model into web ontology language description
logic, enabling automated reasoning in that language. How-
ever, they do not address the issue of handling heterogeneous
information. In summary, current methods fail to address the
issue of semantic heterogeneity well.

Based on the aforementioned analysis, this work proposes

an ontology mapping approach named Querying of Ontology
Mapping-based OPC UA (QOMOU) to tackle this funda-
mental problem. First, the OPC UA information model is
extracted and converted into a graph structure. Then, the
meaning of the data is supplemented using Web Ontology
Language (OWL), providing clear structures and significant
interpretation of data object meanings. Furthermore, this
method determines whether data objects are the same by
calculating the similarity between concepts explained by the
data objects. Therefore, the heterogeneity [8] between data
from different vendors is resolved by assessing the similarity
of concept interpretations to determine if they represent
the same object. Finally, the method’s data management
and reasoning capabilities are validated by inputting specific
SPARQL queries into the Apache Jena engine’s automatic
reasoning mechanism [9] to obtain the desired answers.
Comparative experiments on query efficiency and accuracy
are conducted using different semantic encapsulation tech-
niques and heterogeneous datasets. The results demonstrate
the efficiency and effectiveness of the QOMOU.

II. BACKGROUND AND APPROACH

In this section, the primary issue addressed by Industry 4.0
is first discussed in II-A. Then, the implementation details of
the QOMOU are presented in subsections II-B and II-C.

A. Semantic Interoperability and OPC UA

To achieve semantic interoperability across industries and
domains, the Industrial Internet Consortium (IIC) redefines
the traditional Open System Interconnection (OSI) reference
model [10]. As shown in Fig. 2(a), combining the presen-
tation layer and the session layer facilitates the structured
parsing of data from endpoints. These improvements all
follow the concept of the smart factory proposed by Industry
4.0. Although OPC UA has an information model, it does
not fully utilize data for automated equipment management.
Therefore, the meaning of the data needs to be understood.
For example, in Fig. 2(b), when a machine tool obtains a
value of 21.821, it is unclear whether it represents tempera-
ture, pressure, or other data types. If it represents a speed, it is
also unclear whether it is rotational or operational speed, and
the unit of this value is undetermined. Therefore, it requires
further interpretation through data semantics [11].

B. Event Class Similarity Model

This subsection describes how to calculate the similarity of
concepts between ontologies and how to avoid human bias.
It details the extraction of similarity distribution tables for
both event class elements [12] and structural similarity.

Event class is an abstract concept that can be defined as a
six-tuple consisting of an action a, the participant or object
o, the time of an event t, the location of an event p, and the
state of an event s. It also can represent a group of events
with common characteristics, e.g., C1= {e11, e12, · · · , e1n}
and C2= {e21, e22, · · · , e2m}, where n and m denote the
number of elements of C1 and C2, respectively. A classic set
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Fig. 3. Conceptual model validation of the integration of OPC UA with ontology, integrating semantic web technologies with OPC UA for sensor discovery
and implementing a semantic access layer to harness the potential of ontologies without disrupting existing OPC UA standards.

similarity algorithm is proposed to calculate ontology simi-
larity. The similarity of C1 and C2 is denoted as so(C1, C2),
i.e.,

so(C1, C2)=
1

mn

n∑
i=1

m∑
j=1

se(C1i, C2j) (1)

where C1i denotes element i in C1 and C2j denotes element
j in C2. se(C1, C2) denotes the element similarity of C1

and C2. It is calculated by multiplying the syntactic and
semantic similarities with their respective weights and then
adding them together. i.e.,

se(C1, C2)=σq·sq(C1, C2)+σt·st(C1, C2) (2)

where σq and σt are the weights of syntax and semantic sim-
ilarity, and σq+σt=1. Moreover, sq(C1, C2) and st(C1, C2)
denote the syntactic and semantic similarity between C1 and
C2, and they are obtained from (3) and (4), respectively.

sq (C1, C2)=
2
∑n

i=1

∑m
j=1 ϕ (C1i, C2j)

l (C1)+l (C2)
(3)

where ϕ(C1i and C2j) is the longest common substring
between two elements C1i and C2j , l(·) denotes the length
of an event. In calculating semantic similarity, it is important
to understand the concept of sememes. They are the smallest
semantic units in language, serving as the basic elements that
compose vocabulary and linguistic meaning. The formula for
calculating the similarity of semantics is given as follows:

st(C1, C2)=
|Ec1←→c2 |
|c1|+ |c2|

· (
∑n

i=1

∑m
j=1sq(C1i, C2j)

|Pc1←→c2 |
) (4)

where c1 and c2 are two sets of sememes, |c1| and |c2| are the
numbers of sememes in the sets, |Ec1←→c2 | is the number of
sememes with semantic relationships in two sets, |Pc1←→c2 |
is the number of pairs from semantic sets with semantic

relationships. Finally, the semantic similarity between C1 and
C2 is denoted as s (C1, C2) , which is given as:

s (C1, C2)=

4∑
k=1

ηk
∏

d∈[o,e,q,t]

sd (C1, C2) (5)

where ηk denotes the degree of impact of each part on the
entire system.

The final similarity is calculated by multiplying the values
of (1)–(4) by their respective weights and then summing them
together. To avoid biases caused by human factors, QOMOU
adopts a sigmoid function (σ(x)) to calculate the weights,
i.e.,

σ(x)=
1

1+e−5(x−α)
(6)

where x is the value of syntactic similarity or semantic
similarity, -5 is a constant that controls the smoothness of the
curve, which helps to avoid the generation of outliers, and α
is a parameter that controls the symmetric center position of
the curve.

C. Process of the QOMOU

In the previous subsection, the calculation of concept
similarity is discussed and this subsection discusses the
integrating process of the OPC UA information model with
the ontology theory. As shown in Fig. 3, the OPC UA
server [13] utilizes a simulated OPC UA sample server from
UMATI1, which includes information models for machine
tools, woodworking tools, robotic arms, etc. OPC UA clients
can be utilized for simple interactions. Moreover, the OPC
UA information model can be extracted through an automated
node crawler named Lion22. After being converted to OWL,

1https://doi.org/10.5281/zenodo.6336935
2https://github.com/hsu-aut/lion
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Fig. 4. Example instance nodes of OPC UA servers.

the similarity calculation method for event classes mentioned
in the II-B is used to merge and classify various data objects.
It can be adopted to convert it into OWL [14]. As shown in
Fig. 4, various categories of events are classified from the
server, each extracted as a subclass. These extracted events
are then stored in a Triplestore3 and fed into the inference
engine. Then, SPARQL queries are used instead of OPC UA
queries, enabling various interactions such as human-machine
interface.

III. EXPERIMENTAL EVALUATION

To validate the effectiveness of QOMOU, the capability
of this model is first validated, including the relationship
between devices and their components, the ability to monitor
device event abnormalities, and the ability to handle such
abnormalities.

A. Model Capability Validation

To answer the question “Which variables belong to a
certain machine?”, in an OWL model without semantic rea-
soning, a significant issue arises where the components in the
third level in Fig. 4 cannot be categorized into the first-level
equipment types. This means that the relationships between
superclasses and subclasses [15] must be manually annotated,

3https://jena.apache.org/

resulting in increased data volume and difficulty in querying.
Therefore, a class hierarchy inference and reverse reasoning
are introduced to ensure query completeness. The query
statement is shown in Listing 1, and the OWL reasoning is
shown in Listing 2. The query results of the part ownership
relationship are shown in Fig. 5. The results demonstrate that
by using the OWL inference engine, subclasses within OPC
UA nodes can be automatically recognized as superclasses
without the need to specify the relationships between them
explicitly.

SELECT ?variable ?nodeID ?variableName ?variableType ?machineID
?machineName
#Querying information from OWL
WHERE {
?urnid owl:sameVariableAs OpcSS:AllMachines.
#Selecting variables from OPC UA machines.
?machine OpcUa:hasComponent* ?variable.
?machine OpcUa:browseName* ?machineName.
?variable OpcUa:belongTo ?machineID.
?variable OpcUa:browseName ?variableName.
?variable OpcUa:typeDefinition ?variableType.
#Filtering variable types.
FILTER( ?variableType = ”IdentificationType” ||?variableType =

”ProductionType” ||?variableType = ”MonitoringType”).
#Querying from a Specific Time Point
?node OpcUa:histValues ( ?Time ?Value ”2024−03−16T08:00:00Z”

”2024−03−28T08:20:00Z”).
}
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LIMIT 5

Listing 1. Query statement-part A.

@prefix :<http://www.zenodo.org/records/.com#> .
@prefix owl: <http://www.zenodo.org/2002/07/owl#> .
@prefix rdf: <http://www.zenodo.org/1999/02/22−rdf−syntax−ns#> .
@prefix xsd: <XML Schema> .
@prefix rdfs: <http://www.zenodo.org/2000/01/rdf−schema#> .
#Subclass and Superclass Reasoning
[ruleBelongtoMonitoringType: (?p :hasMonitor ?m) (?m :hasTool ?g) (?g

:hasBranch ?q) (?p browseName: ’BasicAMMachine’)−> (?q
rdf:belongto :p)]

#Inverse Reasoning of Inclusion Relationship
[ruleInverse: (?p :hasVariable ?m) −> (?m :belongTo ?p)]

Listing 2. OWL reasoning.

Fig. 5. Query results of the part ownership relationship.

When the device encounters an abnormal event, the ar-
chitecture queries the issue and raises an abnormal alarm.
The code for querying anomalies is displayed in Listing 3,
and the detection results are shown in Fig. 6. The results
demonstrate that the architecture can remind the staff to
switch the mode from automatic to manual, which helps to
prevent an abnormal situation during the production process.

SELECT ?event ?eventType ?value ?timestamp ?statuscode
?machineName
WHERE {
#Selecting events from BaiscAMMachine Procedure and Unit
?proc ISA88:isMonitoringInProcessStage ?Process .
?urnid owl:isAssigneTo ?Process .
FILTER( ?proc = OpcSS:UnitProcedureWarning).
FILTER( ?unit = OpcSS:BasicAMMachine).
#Selecting timestamps of events
?Process ISA88:hasInput ?starttime.
?stimeDE Alarm59031:hasDescription
OpcSS:StartTimeProcess;
Error59029:hasDescription /
CurrentMode:Value ?starttime.
#Selecting events from OPC UA machines.
?machine OpcUa:hasEvent* ?event .
?event OpcUa:type* ?eventType .
?event OpcUa:hasValue ?value .
?event OpcUa:monitorTime ?timestamp .
?event OpcUa:state ?statuscode .
FILTER(?variableType = ”State”||?variableType = ”MonitoringType”) .
#Extracting from RDF information

?node OpcUa:histValues ( ?Time ?Value ?starttime ?endtime) .
}

Listing 3. Query statement-part B.

Fig. 6. Query results of the part anomalies.

B. Efficiency and accuracy of queries

In this subsection, the experiments on the query efficiency
and query accuracy of QOMOU are conducted to validate
its effectiveness [16]. To compare query efficiency, SQL
datasets with and without format wrapping and XML-based
datasets are selected. Moreover, 4,000 OPC UA server data
are extracted, with query times recorded for every 300 pieces
of data. Fig. 7 shows the comparison of query times for
different semantic web technologies.

Dataset size (piece)

Q
u
er

y
 t

im
e 

(u
s)

SQL

XML

OWL

Fig. 7. Query time for different semantic web technologies.

It is shown that the query time of the QOMOU is smaller
than that of SQL and XML semantic integration schemes,
validating its effectiveness. In validating the query accuracy
rate, the accuracy [17] of existing heterogeneous data inte-
gration schemes is compared. The accuracy metric is QAR,
where the query result set is R, and the users’ expected result
set is SR, SR is calculated as:

QAR =
SR

R
× 100% (7)

Moreover, experiments are conducted to validate the query
accuracy of QOMOU [18]. The comparison methods include
probability factor framework [19] and logical object-oriented
interaction [20]. Furthermore, the experimental data is di-
vided into four groups, each with two hundred thousand data
points. This ensures that accurate fluctuation comparisons can
be made after completing the experiments for all four groups.
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TABLE I
QUERY ACCURACY ANALYSIS

Methods Group 1 Group 2 Group 3 Group 4 Float Ratio (%)
Probability factor framework 0.60 0.49 0.58 0.68 3.2∼16

Logical object-oriented interaction 0.69 0.62 0.57 0.56 6.5∼19
QOMOU 0.71 0.65 0.63 0.60 2.1∼10

Table I shows the accuracy and fluctuation ranges of three
methods. It is illustrated that the accuracy of each method
fluctuates within a certain range. Due to the utilization of
event-class semantic integration algorithms, the accuracy of
QOMOU is above average, indicating higher query accuracy.

IV. CONCLUSION

Industry 4.0 transforms traditional manufacturing into
intelligent manufacturing. This work emphasizes the im-
portance of semantic interoperability in factory workshops.
Moreover, Object Linking and Embedding for Process Con-
trol Unified Architecture (OPC UA) is an effective knowledge
model suitable for factory workshops. However, due to data
heterogeneity, achieving unified management and communi-
cation in factories with OPC UA is extremely challenging.
Currently, ontology mapping methods based on OPC UA suf-
fer from slow speed and low efficiency. Therefore, a Querying
of Ontology Mapping-based OPC UA (QOMOU) is designed
to solve the above problems. QOMOU maps the OPC UA
information model to the resource description framework in
ontology technology and creates a web ontology language in
a graph structure. Additionally, it calculates the similarity of
event class concepts and addresses the semantic heterogeneity
issue of devices produced by different manufacturers. Finally,
the effectiveness of QOMOU is validated through functional
queries. Experimental results show that the query time with
QUMOU is reduced by 5% on average than those with SQL
and XML. Furthermore, QUMOU achieves a 4% on average
higher query accuracy than other state-of-the-art querying
models.

In the future, we plan to refine our semantic mapping
algorithm to enhance the accuracy of queries by integrating
similarity models of event classes. We also plan to utilize
dynamic database storage for mapping models to monitor
OPC UA servers in real-time.
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