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Abstract—Water quality prediction methods forecast the
future short or long-term trends of its changes, providing
proactive advice for water pollution prevention and control.
Existing water quality prediction methods only consider the his-
torical data of single-type or multi-type water quality. However,
meteorology and other factors also have a significant impact
on water quality indicators. Therefore, only considering the
historical data of water quality is not feasible. Unlike existing
studies, this work proposes a hybrid water quality prediction
model called CMI to solve the above problem. Before prediction,
CMI incorporates a multimodal fusion mechanism of water
quality time series and remote sensing images of meteorological
rainfall. Moreover, CMI integrates the model of ConvNeXt
V2 and a multimodal bottleneck transformer to extract image
features for fusing the time series and images. Furthermore, it
utilizes an emerging model of iTransformer to realize prediction
with the fused features. Experimental results with real-life
water quality time series and remotely sensed rainfall images
demonstrate that CMI outperforms other state-of-the-art fusion
algorithms, and the water quality prediction accuracy with fused
meteorological data is 13% higher on average than that with
only water quality time series.

Index Terms—Water quality, multimodal fusion, time series
prediction, multimodal bottleneck transformer, iTransformer

I. INTRODUCTION

With the progress of civilization in human society and
the enhancement of public awareness of environmental pro-
tection, the scientific usage and systematic protection of
water resources have become an inevitable choice for the
sustainable development of all countries in the world. Water
quality prediction methods can obtain short or long-term
water quality change trends in the future. Thus, it can guide
water pollution prevention and provide technical support for
water environmental control. Water quality predictions [1]
are essentially a time series prediction problem, which refers
to the prediction of changes in water quality indicators in
the future period based on their values at historical time
points. Water quality prediction research can be divided
into mechanistic and data-driven models. Mechanistic models
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require a large number of parameters to be preset in ad-
vance and the training process is complex, requiring large
computational resources and time costs. Data-driven models
can be divided into statistical, machine learning, and deep
learning methods. Machine learning is built upon statistical
learning, and deep learning is a subfield of machine learning.
They have achieved good results in the time series prediction
in recent years. Compared with machine learning, which
requires complex feature engineering, it can automatically
learn patterns and trends in the time series data. Moreover,
a neural network involves important parameters such as the
number of hidden layers and the number of neurons.

Deep learning models is powerful to capture complex
nonlinear patterns [2]. They can be summarized into two
categories. First, recurrent neural networks (RNNs) [3], [4],
e.g., long short-term memory models [5], [6], are good at
dealing with long sequences and effectively capture temporal
dependencies in the time series. Second, convolutional neural
networks (CNNs) [7] transform the time series data into a
two-dimensional matrix and automatically extract its features
through operations such as convolutional and pooling to
realize the prediction. For example, temporal convolutional
networks [8] solve problems of gradient vanishing and high
computational complexity of traditional RNNs when dealing
with the long series. In addition, RNNs and CNNs are often
integrated with attention mechanisms to adaptively weight
various parts of the input data, thus focusing more on the
key information while reducing the influence of irrelevant
information. For example, Transformer [9] treats the time
steps of the input sequence as positional information, and
designes the features of each time step as a vector and adopts
the encoder-decoder framework for prediction. FEDformer
[10] introduces a local attention mechanism and a reversible
one to convert the time domain into the frequency domain,
and it better captures local features in the time-series data
and has higher computational efficiency.

However, there are many other factors affecting water
quality indicators in the water environment, e.g., meteorology,
pollutants, and others. Thus, only considering the historical
data of water quality is not sufficient [11] to make accurate
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prediction. Other multimodal data, such as meteorological
data, need to be jointly considered, Moreover, the fusion of
data information from different modalities is imperative. Data
fusion methods based on deep learning have been widely
adopted to solve many complex environmental monitoring
problems including water quality prediction. The work in [12]
analyze the relationship between meteorological elements
and wind power, and proposes a prediction method fusing
wind speeds from multiple sources to predict the wind
power generatio. In addition, multimodal fusion methods
based on the attention mechanism have become popular.
Multimodal bottleneck transformer (MBT) [13] introduces
attention bottlenecks on top of the Transformer, forcing
different modalities to share necessary information through a
small number of bottlenecks. mPLUG [14] designs a cross-
modal skip connection that allows visual modalities to skip
cross-attention and directly performs self-attention, realizing
efficient fusion. Liu et al. [15] design a loss function for
medical image fusion in different dimensions and propose a
multimodal feature fusion module to better preserve modality
information.

Based on the aforementioned analysis, to improve the
accuracy of water quality prediction with full utilization of
meteorological data, a multi-indicator prediction model com-
bining the ConvNeXt V2 [16], MBT, and ITransformer [17],
called CMI for short, is proposed. The main contributions of
this work are summarized as follows.

• Considering the influence of meteorological factors on
water quality indicators, the multimodal fusion of water
quality time series and remotely sensed rainfall images
is innovatively proposed. The multimodal fusion-based
prediction model called CMI is proposed with both time
series and images as the input.

• CMI integrates ConvNeXt V2, MBT, and iTransformer
to extract remotely sensed rainfall images features, re-
alize multimodal fusion of time series and images, and
predict future information with the fused information,
respectively.

• Experimental results based on real-world water quality
and remotely sensed rainfall images prove that the
prediction accuracy with CMI is on average 13% higher
than that with the non-fused one.

II. PROPOSED METHODOLOGY

This section presents the overall structure of CMI model.
CMI is divided into three main components including data
feature processing, multimodal data fusion, and prediction
module. As shown in Fig. 1, time series are encoded using
the embedding module. Moreover, remotely sensed rainfall
images are dimension-aligned and feature-learned using the
ConvNeXt V2 network. The fusion module includes the MBT
for fusing water quality time series with remotely sensed
rainfall images. Finally, the fused data is adopted as the input
to the iTransformer for multi-indicator water quality predic-
tion. Spewcifically, The input time series Xt is encoded into
indicator tokens by the embedding block, and the images Xr

are extracted by ConvNeXt V2 to generate uniform-format

features yt and yr, which denote the tokens of the time series
and remotely sensed rainfall images, respectively. yt and yr
interact with each other through attention bottlenecks, whose
intermediate results are further input into the fusion layer to
produce the new information finally fed into iTransformer for
the prediction.

A. Data Feature Processing

1) Embedding: The embedding structure of iTransformer
is used to encode the water quality time series, which is
different from the embedding in the traditional Transformer.
Transformer embeds all the indicators of the same time node
in the sequence into a time token. Thus, it does not differen-
tiate between single and multiple indicators and pays more
attention to the correlations between time nodes. When CMI
deals with the multiple indicators, each indicator in the time
series is embedded into the indicator token independently.
Thus, it does not require the same time node, which enables
clearer learning of the correlations among the indicators
when the attention mechanism is utilized to describe inter-
relationships between tokens. Because the indicator tokens
have positional logic within themselves, which can be implic-
itly stored in the neurons of the feed-forward neural network,
CMI does not need the positional embedding in Transformer.
The comparison of embeddings between Transformer and
CMI is shown in Fig. 2.

2) ConvNeXt V2: ConNeXt V2 is adopted to extract
features of remotely sensed rainfall images. It is built upon
ConNeXt by designing a fully convolutional masked autoen-
coder framework, which consists of a sparse convolution-
based ConvNeXt encoder and a lightweight ConvNeXt block
decoder. Feature collapse occurs when training ConNeXt
directly on masked inputs, and therefore, a global response
normalization layer is added to address this issue to enhance
feature competition among ConvNeXt block channels and
promote feature diversity during the training.

B. Multimodal Fusion

CMI adopts the attention bottleneck fusion in MBT to
fuse water quality time series data and remotely sensed
rainfall images data. MBT is essentially Transformer applied
to the multimodal case, and it introduces multiple new tokens
yf=

[
y1f , y

2
f , . . . , y

B
f

]
as attention bottlenecks in the input

data. B is the number of tokens in the attention bottle-
neck. The input sequence becomes y= [yt ∥yf∥yr ]. Different
modalities can only share information and interact with each
other through these bottleneck tokens. In this case, yt and
yr can only exchange information through yf . To reduce
the computational complexity, the model requires that the
information flow of each modality needs to be organized and
condensed before passing through the bottleneck tokens, and
the necessary information needs to be shared to ignore the
redundant information. The number of attention bottleneck
tokens needs to be restricted to be much smaller than the
number of input data tokens. The bottleneck markers are
updated separately according to different modes, one update
each according to the time series and remotely sensed rainfall
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Fig. 2. Comparison of embeddings between Transformer and CMI.

images. Finally, the bottleneck markers of each mode are
averaged to yield the final fusion markers. The process can
be defined as:[

yl+1
t ∥ŷl+1

ft

]
=Transformer

([
yl
t∥yl

f

]
; θt
)

(1)[
yl+1
r ∥ŷl+1

fr

]
=Transformer

([
yl
r∥yl

f

]
; θr
)

(2)

yl+1
f =Avgi

(
ŷl+1
fi

)
(3)

where yl
t denotes a vector of tokens of the time series in

fusion layer l, yl
r denotes a vector of tokens of the remotely

sensed rainfall images in fusion layer l, θt represents a pa-
rameter vector of the time series, and θr denotes a parameter
vector of the remotely sensed rainfall images.

In terms of fusion location, a medium-term fusion strategy
is employed, assuming that the number of fusion layers is in
layer n, and each modality in the first n−1 layers learns its
features with the self-attention mechanism, i.e.,

yl+1
t =Transformer

(
yl
t; θt

)
(4)

yl+1
r =Transformer

(
yl
r; θr

)
(5)

Then, yl
t and yl

r interact with each other through the
attention bottlenecks in the fusion layer in a self-learning
manner. yl denotes a set of yl

t and yl
r, which is given as:

yl=
[
yl
t∥yl

r

]
(6)

yl+1= Multimodal-Transformer
(
yl; θt , θr

)
(7)

C. Multi-indicator Water Quality Prediction

This work adopts iTransformer to implement multi-
indicator water quality prediction. The structure is basically
the same as the encoder of transformer, and its module
fucntions have been changed because of different embedding
methods and the changes of operands from time tokens to
indicator tokens. In iTransformer, a feed forward neural net-
work learns non-linear characteristics of each indicator token,
which encodes a individual token and decodes the future
representation. A normalization layer is used to normalize
indicator tokens, which keeps different indicator variables
in the same interval and reduces differences in numerical
properties among different indicators.

In Transformer, the attention mechanism performs atten-
tion computation on different positions of the input sequence
to learn its contextual relationships and dependencies. In
iTransformer, the attention mechanism is used to capture the
correlation among different indicator variables, as shown in
Fig. 1. The attention mechanism module performs a linear
map from indicator variables to yield the query (q), key (k)
and value (v) of indicator tokens, since indicator variables
are normalized in their feature dimensions, the attention
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mechanism computes the correlation, Atten(q,k,v) of q, k,
and v with the following formula.

Atten(q,k,v)=Softmax

(
qk⊤
√
dk

)
v (8)

where dk denotes the dimension of k.

III. EXPERIMENTAL EVALUATION

A. Dataset

Two datasets are adopted in this experiment. The first
dataset is the real-time data of national surface water quality
automatic monitoring from the China Environmental Moni-
toring Station [18] in Wucun, Langfang City, Hebei Province,
China. It is recorded by the sensor every four hours, from
Aug. 2019 to Dec. 2023. This dataset includes nine water
quality indicators, i.e., dissolved oxygen, total nitrogen, the
potential of hydrogen, temperature, conductivity, turbidity,
potassium permanganate index, ammonia, and total phos-
phorus. Another dataset uses the satellite remote sensing
data published in the Global Satellite Precipitation Program
mission [19]. It includes multi-sensor and multi-satellite in-
formation in satellite networks. Moreover, the remote sensing
data is recorded every 30 minutes with a spatial resolution
of 0.1° x 0.1°. The period is also from Aug. 2019 to Dec.
2023, and the variables include latitude, longitude, time, and
rainfall. A typical remotely sensed rainfall image in Beijing-
Tianjin-Hebei of China is shown in Fig. 3.

Fig. 3. A typical remotely sensed rainfall image in Beijing-Tianjin-Hebei
of China

B. Evaluation Metrics

To test the prediction accuracy of CMI, mean absolute
error (MAE) [20] and mean squared error (MSE) [21] are
adopted. MAE and MSE are calculated as:

MAE=
1

a

a∑
j=1

∣∣∣ĥj − hj

∣∣∣ (9)

MSE=
1

a

a∑
i=1

∣∣∣ĥj − hj

∣∣∣2 (10)

where a denotes the number of samples. hj and ĥj denote
the ground truth and predicted values of data point j.

C. Parameter Tuning

The hyperparameter selection greatly affects the prediction
accuracy. CMI’s hyperparameters include the length of the
input sequence (S), the number of features of the encoder
(D), the dimension of embedding, and the number of fusion
bottleneck tokens (B).

The prediction accuracy varies significantly with S. If S is
too short, the attention mechanism is not enough to capture
the information, yielding lower prediction accuracy. However,
if S is longer, there is too much noise or periodic information
in the sequence, leading to overfitting that reduces the pre-
diction accuracy. Table I shows the MAE and MSE values of
CMI for different input sequences, and the results prove that
the prediction accuracy of CMI is the optimal when S=48.

Too-small D does not capture enough information, and
larger D yields a more expressive model. However, it re-
quires more training time, computational resources, and the
overfitting. During the tuning process, it is found that D has a
great impact on the prediction accuracy. Table II shows MAE
and MSE of CMI when D∈[128, 256, 512, 1024]. The results
prove that CMI achieves the best prediction accuracy when
D=512.

In the fusion part, the number of bottleneck tokens is the
most important hyperparameter. To avoid too large compu-
tational complexity of the fusion, the number of bottleneck
tokens needs to be much smaller than the number of input
data tokens, Table III shows MAE and MSE of CMI with
different B, and the result proves that the fusion performance
is the best and the prediction result is the most accurate when
B=1.

TABLE I
MAE AND MSE OF CMI WITH DIFFERENT S

S MSE MAE
48 0.453 0.469
72 0.465 0.471
96 0.472 0.491

120 0.494 0.517

TABLE II
MAE AND MSE OF CMI WITH DIFFERENT D

D MSE MAE
128 0.464 0.479
256 0.453 0.469
512 0.438 0.463
1024 0.467 0.48

TABLE III
MAE AND MSE OF CMI FOR DIFFERENT B

B MSE MAE
1 0.412 0.442
2 0.433 0.459
3 0.428 0.454
4 0.425 0.452
5 0.452 0.465
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TABLE IV
COMPARISON OF PREDICTION RESULTS OF CMI, LMF-ITRANSFORMER, TFN-ITRANSFORMER, AND ITRANSFORMER

Prediction Length CMI LMF-iTransformer TFN-iTransformer iTransformer
MSE MAE MSE MAE MSE MAE MSE MAE

96 0.407 0.425 0.421 0.448 0.423 0.450 0.413 0.436
128 0.453 0.469 0.475 0.491 0.476 0.490 0.478 0.480
160 0.513 0.517 0.518 0.517 0.529 0.523 0.523 0.517
192 0.556 0.542 0.557 0.542 0.584 0.559 0.579 0.556
228 0.613 0.576 0.636 0.598 0.657 0.603 0.654 0.598
256 0.652 0.602 0.674 0.612 0.705 0.629 0.715 0.628
288 0.693 0.624 0.729 0.644 0.773 0.663 0.767 0.655
320 0.734 0.637 0.745 0.650 0.788 0.673 0.831 0.687
352 0.774 0.664 0.808 0.681 0.827 0.696 0.887 0.714
384 0.840 0.698 0.877 0.716 0.896 0.723 0.950 0.746
425 0.881 0.717 0.892 0.722 0.900 0.722 1.019 0.777
450 0.886 0.715 0.915 0.736 0.925 0.728 1.062 0.796
475 0.925 0.732 0.937 0.741 0.976 0.760 1.109 0.814
500 0.906 0.706 0.975 0.765 0.936 0.715 1.131 0.818
512 0.857 0.703 0.917 0.736 0.952 0.740 1.148 0.823

96 128 192 256 320 384 450 512

Steps

0.0

0.2

0.4

0.6

0.8

M
A
E

iTransformer CMI

Fig. 4. MAE of CMI and iTransformer

96 128 192 256 320 384 450 512

Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
S
E

iTransformer CMI

Fig. 5. MSE of CMI and iTransformer

D. Comparison of Experimental Results

To demonstrate the fusion effect of water quality time
series and remotely sensed rainfall data on the accuracy
of water quality prediction, we first compare CMI with
iTransformer. The comparison of MAE and MSE is shown

96 128160192228256288320352384425450475500512
Steps

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
A
E

CMI

LMF-iTransformer

TFN-iTransformer

Fig. 6. MAE of CMI, LMF-iTransformer, and TFN-iTransformer

96 128160192228256288320352384425450475500512
Steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
S
E

CMI

LMF-iTransformer

TFN-iTransformer

Fig. 7. MSE of CMI, LMF-iTransformer, and TFN-iTransformer

in Figs. 4 and 5. The iTransformer model only adopts the
water quality time series data, and CMI adopts both the
water quality time series, and spatially and temporally aligned
remotely sensed rainfall images. In addition, we compare
CMI with two commonly used fusion models, including
Low-rank Multimodal Fusion (LMF) [22] and Tensor Fusion
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Network (TFN) [23]. The comparison of MAE and MSE of
different models is shown in Figs. 6 and 7. Table IV shows
MAE and MSE of each model when the prediction steps
are in a set of (96, 128, . . . , 512), respectively. The results
show that compared with LMF and TFN, CMI yields the
highest prediction accuracy. In addition, CMI’s prediction
accuracy of water quality time series fused with remotely
sensed rainfall images is on average 13% higher than that
with only the time series.

IV. CONCLUSIONS

Water quality is affected by meteorological factors in ad-
dition to the water environment itself. Existing water quality
prediction methods only take water quality historical indica-
tor data as the input. However, there are many other factors
that affect water quality indicators, such as meteorology
and pollutants. Therefore, considering only historical data on
water quality is not sufficient for accurate prediction, fusion
of data from different modalities is needed. This work pro-
poses a novel multi-indicator water quality prediction model
called CMI, which combines the ConvNeXt V2, Multimodal
bottleneck transformer (MBT) and Itransformer. ConvNeXt
V2 is integrated to learn features of remotely sensed rainfall
images and align them with the feature dimensions of time
series. MBT is used to learn influences of the time series and
rainfall images, and fuse their respective features. Finally, the
fused new features are fed into the iTransformer for predic-
tion. Experimental results with real-life water quality time
series and remotely sensed rainfall images prove that CMI
outperforms other state-of-the-art fusion algorithms including
low-rank lultimodal fusion and tensor fusion network. CMI’s
accuracy of water quality prediction by fusing time series
and rainfall images is 13% higher on average than that with
only water quality time series.

In the future, we intend to further explore the impact of
pollutants on water quality and integrate pollution indicators
for more accurate prediction.
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