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Abstract—Water pollution is continuously increasing in water
ecosystems across all continents. Surface water sensors can
record data on water quality indicators at regular intervals, and
the associated water quality sequences show abnormal trends
when extreme weather or unusual industrial discharges occur.
Therefore, governments can take timely actions to minimize
damage and protect the water environment by detecting these
abnormal trends promptly. However, current methods make it
difficult to interpret different correlations among water quality
parameters effectively. To solve this problem, this work proposes
a parameter correlation-aware anomaly detection model, which
integrates Dual sliding windows, Convolutional LSTM, and a
Deep neural network with dropout, called for DCLD short.
First, DCLD designs dual sliding windows to capture local
and global patterns within the sequence of water quality.
Second, DCLD adopts a stacked long short-term memory with
a convolutional neural network to capture complex features and
long-term dependencies in the time series. Third, DCLD uses
a deep neural network incorporating the dropout algorithm to
extract abstract features. DCLD mitigates overfitting risks and
enhances the model’s generalization capacity. Finally, DCLD is
evaluated with two real-world water quality datasets, and its
anomaly detection accuracy is improved by 5.41% and 0.79%
on average over its peers.

Index Terms—Water quality, anomaly detection, parameter
correlations, LSTM, convolutional neural networks.

I. INTRODUCTION

Water pollution has become one of the factors restricting
social development. In water quality protection, many mon-
itoring sensors are deployed in water environments world-
wide, which monitor and upload water quality data in real-
time. Those sensors have accumulated data about water
quality over the years [1]. Moreover, detecting anomalies in
the water quality time series is essential to provide timely
actions for water quality data warnings and ultimately min-
imize losses incurred by water quality anomalies. However,
several water quality indicators, including dissolved oxygen
(DO), nitrogen content, etc., can impact the water quality
data. As shown in Fig. 1(a), there is a strong correlation
between DO and temperature, and in Fig. 1(b), the correlation
between the Potential of Hydrogen (pH) and turbidity is
weak. In addition, different water quality indicators may
also have different degrees of correlation with each other.

This work was supported by the National Natural Science Foundation of
China under Grants 62073005 and 62173013, the Beijing Natural Science
Foundation under Grants 4232049 and L233005, and the Fundamental
Research Funds for the Central Universities under Grant YWF-23-03-QB-
015.

Some indicators may be highly correlated, while others may
have low or no correlation. In that case, such differences
may lead to challenges during anomaly detection. Therefore,
choosing the best model to analyze the water quality series
with different degrees of correlation is highly challenging.
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(a) Correlation between DO and temperature.
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(b) Correlation between pH and turbidity.

Fig. 1. Correlation between different indicators.

To solve the above problems, researchers have proposed
several methods for detecting anomalies in the time series.
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Traditional methods comprise four types: 1) statistical meth-
ods, e.g., seasonal autoregressive integrated moving average,
and seasonal decomposition; 2) distance-based algorithms,
e.g., K-nearest neighbor (KNN) [2] and local outlier factor
(LOF) [3]; 3) clustering-based algorithms, e.g., K-means
algorithms [4]; and 4) machine learning-based algorithms,
e.g., support vector machine [5] and random forests [6].
These methods are suitable in cases where the amount of data
is small, and the problem is relatively simple. However, dif-
ferent degrees of correlation between different water quality
parameters complicate the problem of water quality anomaly
detection. In addition, deep learning methods possess strong
learning capabilities, enabling automatic acquisition of high-
level feature representations from the raw data. They excel in
capturing intricate data patterns and relationships, including
nonlinear and time-varying relationships. Additionally, they
exhibit superior adaptability to large-scale datasets. There-
fore, the primary focus of time series anomaly detection
research is progressively transitioning from conventional sta-
tistical machine learning approaches to more robust deep
learning techniques.

Two common models in deep learning, including recurrent
neural networks (RNNs) and convolutional neural networks
(CNNs), are employed in identifying anomalies within water
quality sequences and yielding promising outcomes. RNNs
[7] can effectively capture time-series features and patterns
of changes within water quality data, facilitating anomaly
detection. Moreover, researchers have proposed a special
variant of long short-term memory (LSTM) [8], [9] on
this basis, which can better capture long-term dependencies.
CNNs [10]–[12] are mainly adopted in two-dimensional
images. However, they can also be used for localized feature
extraction of one-dimensional water quality data, such as
sudden water quality changes or unusual fluctuations. These
deep learning models combine the characteristics of time-
series data to capture temporal information and anomalous
patterns better. However, RNN may not be able to handle
long-term dependencies well, and CNN also localizes the
problem of sensory field limitations. In this case, some
researchers have attempted to combine these two models
to deal with the time series anomaly detection problems.
For example, Antonius et al. [13] propose a convolutional
long short-term memory network (C-LSTM) to combine the
advantages of CNN and LSTM and achieve good results in
anomaly detection. However, this method is insufficiently
flexible to address the constantly changing and complex
real-world environments. In recent years, transformers [14]
have been widely applied to anomaly detection due to their
excellent ability to capture global information. Chen et al.
[15] introduce graph neural networks to address anomaly
detection problems. However, these models are too complex
and time-consuming [16], failing to meet the timeliness
requirements for the water quality anomaly detection.

To detect water quality anomalies more scientifically, this
work proposes a new anomaly detection model that combines
Dual sliding windows, Convolutional LSTM, and a Deep
neural network with dropout, called for DCLD short. Experi-

ments with two real-world water quality datasets demonstrate
that DCLD outperforms state-of-the-art anomaly detection
models. The major contributions of our work are two-fold:

1) DCLD integrates a dual sliding window analyzer, which
employs two sliding windows for data processing and
analysis. Primary and secondary windows are adopted
from a cascade structure to extract multi-scale temporal
features and improve feature richness.

2) DCLD combines DNN with the dropout mechanism,
CNN, and stacked LSTM models. It utilizes different
correlations of water quality parameters, improving the
model’s sensitivity and anomaly detection accuracy.

II. MODEL FRAMEWORK

This section describes our proposed DCLD. First, the
problem of water quality anomaly detection is introduced.
Each module and the architecture of DCLD are explained.

A. Problem Definition

The purpose of detecting anomalies in water quality se-
quences is to assess if the current water quality is suscepti-
ble to contamination, leveraging past water quality samples
collected from river sensors. X denotes a water quality
time series and X={x1, x2, . . . , xt}, where xt represents the
water quality data at time point t. Each point encompasses
two factors, including DO and total phosphorus (TP). A
function f(xt) represents the state of water quality at time
point t, which maps xt to a state of normal or anomaly, i.e.,
f(xt) → {normal, anomaly}.

B. Dual Sliding Window

As shown in Fig. 2, DCLD comprises three primary
components: dual sliding windows, C-LSTM, and DNN. The
structure of the dual sliding window module is shown in Fig.
3. Specifically, two sliding windows are utilized. The primary
and the secondary windows are adopted to process the data
simultaneously, thereby converting the anomaly detection
into a classification problem.

In the primary window, the size of the sliding window
is denoted by W1. A zero padding strategy is employed to
overcome the issue of insufficient data at the beginning of the
series due to window size limitations, padding the initial part
of the series with W1−1 zero values. The extended series can
be represented as X ′ and X ′={0, 0, . . . , 0, x1, x2, . . . , xn}.
X ′ contains W1−1 zero values to ensure that each sliding
window can acquire sufficient data points for processing.
Thus, for each position t′ (t′∈[1, 2, . . . , n]) in the extended
series X ′, the sliding window encompasses data points from
x′
t′ to x′

t′+W1−1, where x′
t denotes the data point t in X ′.

Therefore, the subsequence X
(W1)
t′ corresponding to each

sliding window can be defined as:

X
(W1)
t′ ={x′

t′ , x
′
t′+1, . . . , x

′
t′+W1−1} (1)

Then, all possible subsequences can be extracted sequen-
tially to form an ordered sequence S(W1), i.e.,

S(W1)=[X
(W1)
1 , X

(W1)
2 , . . . , X(W1)

n ] (2)
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Fig. 2. Structure of DCLD.

For each data point in S(W1), mean processing results in
a new sequence is performed, and it is defined as:

S̄(W1)=[X̄
(W1)
1 , X̄

(W1)
2 , . . . , X̄(W1)

n ] (3)

Following the same principle, a secondary window of size
W2 is constructed, and W2<W1. Thus, the sequences are
shown as:

X
(W2)
t′′ ={x′′

t′′ , x
′′
t′′+1, . . . , x

′′
t′′+W2−1}

S(W2)=[X
(W2)
1 , X

(W2)
2 , . . . , X(W2)

n ]

S̄(W2)=[X̄
(W2)
1 , X̄

(W2)
2 , . . . , X̄(W2)

n ]

(4)

Front

Rear

Primary window

Front
Rear

Secondary window

Dual sliding window

Fig. 3. Structure of the dual sliding window module.

By concatenating S̄(W1) and S̄(W2), a new sequence Xc

is obtained. Using a dual-stage sliding window, the one-
dimensional time series data is transformed into a two-
dimensional dataset, facilitating the extraction of temporal
features across two dimensions.

C. C-LSTM Layer

As shown in Fig. 2, the C-LSTM layer consists of a CNN
network and two stacked LSTM layers to help the model
learn water quality features. Xc is input to the CNN, which
undergoes the convolution operation, the activation function,
and the pooling operation to obtain the pooled output feature
map (Yp), i.e.,

Yp=Pool(Tanh(Xc∗Θ)) (5)

where Θ is the convolutional kernel. ∗ represents the convolu-
tion operation, Tanh(·) is the hyperbolic tangent function, and
Pool(·) is the pooling operation. Afterwards, Yp is reshaped
into Xl.

Each LSTM layer contains multiple LSTM cells, each of
which is given as:

ft=σ(Wf · [ht−1, xlt]+bf )

it=σ(Wi · [ht−1, xlt]+bi)

C̃t=tanh(Wc · [ht−1, xlt]+bc)

Ct=ft · Ct−1+it · C̃t

ot=σ(Wo · [ht−1, xlt]+bo)

ht=ot · tanh(Ct)

(6)

where xlt represents the input at time step t. ft, it, and ot
denote the forget, input, and output gate outputs at time step
t, respectively. ht−1 and ht represent the hidden states at time
steps t−1 and t. C̃t represents the new information proposed
to update the memory cell at time step t. Ct denotes the
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content of the memory cell at time step t. Wi, Wf , Wo, and
Wc are the weight matrices for the input gate, the forget gate,
the output cell, and the candidate gate, respectively. bi, bf ,
bo, and bc are the bias vectors for the input gate, the forget
gate, the output cell, and the candidate gate, respectively.
Therefore, the output of the stacked LSTM is given as:

H=LSTM2(LSTM1(Xl)) (7)

where LSTM1 and LSTM2 represent the first and the second
LSTM layers in a stacked LSTM, respectively.

D. DNN layer

The dropout mechanism is utilized to drop inputs during
the training process of the DNN randomly, i.e.,

H(l)=tanh
(

dropout
(
H(l−1) ·W (l)+b(l), p

))
(8)

where H(l) represents the output of layer l. b(l) and W (l)

are the bias vector and weight matrix of layer l, respectively,
and p is the dropout rate. Finally, the output of DCLD, O, is
obtained as:

O=sigmoid
(
H(L) ·W (L+1)+b(L+1)

)
(9)

where L refers to the number of hidden layers.

III. EXPERIMENTAL EVALUATION

A. Experimental Setup

The DCLD and comparative models are executed using
PYTORCH in a server with an Intel Xeon 6248R CPU and
a GTX3090 GPU. Moreover, DCLD is evaluated with two
real-world water quality datasets collected from stations in
the Beijing-Tianjin-Hebei region, China. The first dataset
collects 9,779 data from Apr. 2, 2014, to Sept. 17, 2018, at
the Gubeikou site in the Beijing-Tianjin-Hebei region, China.
Another collects 6,511 samples from Aug. 31, 2018, to Dec.
12, 2021, at the Wucun site. Data points in these datasets
are gathered at four-hour intervals. Moreover, DO and TP
are chosen as the detection indicators. The two datasets are
illustrated in Table I. It is worth noting that the experimental
datasets are real. Thus, the number of outliers is low, and
there is a data imbalance issue. Four types of anomalous
data are added and shown in Fig. 4. The ratio of the training,
validation, and test sets is set to 7:1:2.

TABLE I
SUMMARY OF DATASETS

Parameter Gubeikou Wucun
Time Span Apr. 2, 2014–Sept. 17, 2018 Aug. 31, 2018–Dec. 12, 2021

Time Interval 4 hours 4 hours
Indicator DO TP

B. Evaluation Metrics

Anomaly detection is treated as a classification task. Mod-
els are evaluated with metrics including Accuracy, Precision,
Recall, and F1-score. Accuracy is the proportion of correctly
identified samples by the model out of the total sample
number. Precision quantifies the fraction of samples the
model accurately classifies as positive out of those labeled as
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Fig. 4. Four types of time series anomalies.

positive. Recall calculates the percentage of positive instances
(true positives) correctly identified from all the actual positive
samples in the dataset, and F1-score offers a balanced mean
of Precision and Recall. They are calculated as:

Accuracy=
TruePositive+TrueNegative

TotalPopulation

Precision=
TruePositive

TruePositive+FalsePositive

Recall=
TruePostive

TruePositive+FalseNegative

F1-score=2×Precision×Recall
Precision+Recall

(10)

where TruePositive represents when the number of posi-
tive samples correctly identified. FalsePositive denotes the
number of false negative samples. TrueNegative represents
the number of negative samples that are correctly identified.
FalseNegative denotes the number of underreported positive
samples. TotalPopulation represents the total number of sam-
ples the model processes in the test set.

C. Hyperparameter setting in DCLD

DCLD has several important hyperparameters, including
the window size of the dual sliding windows, the discard rate,
and the number of DNN layers. Based on the experimental
results in Figs. 5 and 6, the number of DNN layers is 2, the
dropout discard rate is 0.3, the primary window size is 60,
and the second window size is 10.

D. Comparison Experiments

To validate the detection performance of DCLD, DCLD is
compared with several benchmark models, including KNN
[2], Autoencoder [17], K-Means [4], LSTM [18], LOF [3],
Random Forest [6], Transformer [2], and VAE [19]. It is
shown in Table II that DCLD exhibits superior performance
across most metrics, notably excelling in accuracy and F1-
score on both datasets. This proves the remarkable effi-
ciency of DCLD in anomaly detection. Fig. 7 shows the
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT MODELS

Methods Gubeikou_DO Wucun_TP
Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

KNN 0.670 0.8167 0.2945 0.4329 0.749 0.8363 0.3970 0.5385
Autoencoder 0.776 0.7239 0.7725 0.7474 0.750 1.0000 0.3243 0.4897

K-Means 0.503 0.4411 0.6034 0.5096 0.262 0.2737 0.6071 0.3773
LSTM 0.565 0.4909 0.4180 0.4515 0.717 1.0000 0.2343 0.3797
LOF 0.669 0.9846 0.2308 0.3739 0.689 0.7846 0.2143 0.3366

Random Forest 0.669 0.6252 0.5673 0.5948 0.683 0.8587 0.1660 0.2782
Transformer 0.534 0.4578 0.4743 0.4659 0.736 1.0000 0.2845 0.5382

VAE 0.531 0.4661 0.6431 0.5405 0.717 1.0000 0.2343 0.3797
DCLD 0.814 0.7694 0.8072 0.7878 0.768 1.0000 0.3724 0.5427
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Fig. 5. F1-score for different layer numbers with different discard rates.
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Fig. 6. F1-score for different window sizes.

trend of the F1-score for different models as a function
of the time step size. Fig. 7(a) presents the performance
of different models with the Gubeikou dataset. It is shown
that traditional machine learning algorithms such as KNN
and LOF perform well in the short-term time series. There
is no significant gap between traditional anomaly detection
and deep learning models. However, deep learning methods
achieve a significant advantage in the medium to long-
term time series. Among them, the autoencoder is already
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(a) F1-score with respect to T for the GubeikouDO dataset.
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(b) F1-score with respect to T for the WucunTP dataset.

Fig. 7. Performance comparison with respect to different T .
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capable of feature extraction, but DCLD is more effective in
handling the temporal dependencies of the time series data.
The dual sliding windows capture data features at different
temporal scales, providing contextual information. Moreover,
combining CNN and stacked LSTM allows the model to
effectively process these features and retain critical informa-
tion over the long-term time series. Furthermore, the dropout
helps prevent the model from overfitting to specific time
steps, ensuring generalization across the entire time series.
The above characteristics enable DCLD to capture more
contextual information and maintain flexibility in adapting to
new data, leading to performance improvement as the time
step increases. However, comparative models do not have this
design to continuously enhance their modeling capabilities
for sequence data, leading to less significant performance
improvements in long-sequence prediction than DCLD.

Similarly, the performance of different models with the
Wucun dataset is presented in Fig. 7(b). It is shown that
DCLD performs the best at most time steps. However, it
experiences a slight decrease in performance in 10 to 20
steps. This is because DCLD encounters outliers or noise at
specific sequence lengths, affecting its performance. Com-
pared to Fig. 7(a), the F1-score of the compared models
exhibits greater fluctuations, indicating that the WucunTP
dataset contains more complex anomaly patterns, affecting
the performance of all models. Given both datasets, DCLD
demonstrates a trend of performance improvement with in-
creasing time step size, showing its ability to learn better and
adjust its anomaly detection mechanism with more data.

IV. CONCLUSIONS

Accurate water quality anomaly detection is imperative to
protect the water environment and reduce water pollution
hazards. The goal of water quality anomaly detection is to
determine whether there is a risk of contamination in the
current water quality based on water quality samples. Water
quality parameters with different levels of correlation in
complex water environments bring a main challenge. In this
work, a water quality anomaly detection model is proposed
that integrates Dual sliding windows, Convolutional LSTM,
and a Deep neural network with dropout, abbreviated as
DCLD. A double sliding window is designed to initially
capture different ranges in the series. Moreover, a C-LSTM
module is proposed to handle the long-term dependencies
of the water quality series, effectively utilizing the features
of the water quality series. Furthermore, abstract features are
further extracted with a DNN network to improve the general-
ization ability and detection performance. Compared to eight
baseline models with two real-world datasets, experimental
results show that DCLD’s accuracy is improved by 5.41%
and 0.79% on average with the two datasets, respectively.

In the future, first, we plan to investigate the cooperative
relationship between the double sliding window and neural
networks to improve feature utilization and better coping with
complex water environments. Second, we intend to investi-
gate relationships in CNNs and LSTM to adaptively select

the most important features and better deal with sequences
of different relevance.
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